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ABSTRACT

It is shown that if {,} is a block of type I of a symmetric basis {x,} in a
Banach space X, then {y,} is equivalent to {x,} if and only if the closed linear
span [y,] of { y,,} is complemented in X. The result is used to study the sym-
metric basic sequences of the dual space of a Lorentz sequence space d (a, p).
Let {x,, /,} be the unit vector basis of d (a, p), for 1 < p < + . It is shown
that every infinite-dimensional subspace of d(a,p) (respectively,[f,]) has a
complemented subspace isomorphic to lp (respectively, lq, 1/p+ 1/g = 1 when
1 < p < + @ and ¢y when p = 1) and numerous other results on compleme-
nted subspaces of d(a, p) and [f,] are obtained. We also obtain necessary and
sufficient conditions such that [f,] have exactly two non-equivalent sym-
metric basic sequences. Finally, we exhibit a Banach space X with symmetric
basis {x,.} such that every symmetric block basic sequence of {x,} spans a
complemented subspace in X but X is not isomorphic to either ¢g or lp,
I<p<+ .

Let 1S£p< + . For any a =(a,,a,,--)eco\ly, a,=2a, =+ =0, let
d(a,p) = {x = (a;,%s,") €Co: SUPger Hiny ch,(,,) Pa, < + oo} where 7 is the set
of all permutations of the natural numbers N. Then d(a, p) with the norm
x| = (upser i1 |0o(my|Pan)'’? for xed(a,p) is a Banach space and the
sequence of unit vector {x,} is a symmetric basis of d(a, p) [4], [5]. Let {f,} be
the sequence of biorthogonal functionals of {x,} in d(a, p)*. In this paper, we
study the symmetric basic sequences in [f,], the closed linear span of {f,} in
d(a, p)*. For the basic properties of d(a, p) we refer to [4], [5]. In particular, it is
known that d(a, p) is reflexive for every aecy\l; when 1 < p < + oo [5]. For the
results on symmetric basic sequences in d(a, p) we refer the reader to [1]. Another
important class of Banach spaces with symmetric bases are the Orlicz sequence
spaces which have been studied by J. Lindenstrauss and L. Tzafriri [7], [8], [9].

A basis {x,} of a Banach space X is called symmetric if every permutation
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{x,m} of {x,} is a basis of X, equivalent to the basis {x,}. Let {x,} be a symmetric
basis in a Banach space X. Define

=Zl ABifi(x)xa(i)u ’ X€ X)

llxll = sup sup
gexn |B:i]S1
1sn<+w

where {f,} is the sequence of biorthogonal functionals of {x,} in X*. Then the
symmetric norm ||| x ||, x € X, is an equivalent norm on X. Throughout this paper
we shall assume that every Banach space with symmetric basis is equipped with
the symmetric norm. It is clear that if {x,,f,} is the unit vector basis of d(a, p),
then the norms in d(a, p) and, respectively, [ f,] are symmetric norms.

Let {x,} be a symmetric basis of a Banach space X and let {y,} be a block of type I
of {x,}. We show that {y,} is equivalent to {x,} if and only if [ y,] is complemen-
ted in X. If {x,, f,} is the unit vector basis of d(a, p), 1 < p < + 00, it is shown in
[1] that every infinite-dimensional subspace of d(a, p) has a subspace isomorphic
to 1,. In this paper it is shown that, in fact, every infinite-dimensional subspace of
d(a,p) (respectively, [f,]) has a complemented subspace isomorphic to I,
(respectively, to I, where 1 /p 4+ 1/qg = 1 when 1 < p < + o0 and ¢, when p = 1).
We also show that for 1 <p< + o and 1/p+1/g = 1, every block basic
sequence {g,} of {f,} which is equivalent to the unit vector basis of I, spans a
complemented subspace of d(a, p)*. We obtain several necessary and sufficient
conditions such that [f,] has exactly two non-equivalent symmetric basic sequen-
ces. An interesting consequence of this result is that in every Lorentz sequence
space d(a, 1) it is impossible for d(a, 1) and [ £,] to have exactly two non-equivalent
symmetric basic sequences simultaneously. It is also shown that no subspace of
d(a, p)* with symmetric basis can be isomorphic to any Lorentz sequence space.
Finally, we exhibit a Lorentz sequence space d(a, 1) with the property that every
symmetric block basic sequence of {f,} spans a complemented subspace of [f,]
but [£,] is not isomorphic either to ¢, or I,, 1 < p < + oo. We also exhibit a
Banach space X with unconditional basis {x,} such that every bounded block
basic sequence of {x,} spans a complemented subspace of X but X is not iso-
morphic either to ¢y or I, 1 < p < + 0.

The notation and terminology in this paper are essentially those of I. Singer [11].
If {x,} and {y,} are the respective bases of Banach spaces X and Y we say that
{x,} dominates {y,}, and write {x,}> {y,}, in the case where X;_, a,x,
converges in X implies X% a,y, converges in Y. The basis {x,} is equivalent to
the basis {y,}, and we write {x,} ~ {y,}, if {x,} > {y.} and {y,} > {x,}.
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In this section, we study the blocks of type I-IV of a symmetric basis in a Banach

space.

DerINITION.  Let {x,} be a symmetric basis of a Banach space X. For any
a= 27, o0x,€X, 0, #0and any p, <p, < -, let

DPn+1
yf'd) = 2 ai—pnxi’ n = 1’2,...
1=p,+1

Then {y} is a bounded block basic sequence of {x,} in X. We shall call
{y™} a block of type I of {x,}.

DEFINITION.  [Z. Altshuler.] Let {x,} be a symmetric basis of a Banach space X.
If {N,} are subsets of the natural numbers N, such that for every i, N, = N,
N = U2 N;and Ny AN; = Fforalli#j,thenforanyO#a = T2 ax, X,
define u{® = X, a;x; ; where for every i = 1,2,--, N; = {i, j}. It is clear that
{u®} is a symmetric basic sequence in X. The sequence {u\"} is called a block of
type II of {x,}.

ProPoSITION 1. [Z. Altshuler.] Let {x,} be a symmetric basis of a Banach
space X and let a = X X, € X such that a; # 0. Then
(i) for every block {y®™} of type 1 of {x,}, there exists a subsequence

{y®Y of {y™} which is equivalent to a block of type II of {x,}.

(i) every block {u™} of type 11 is equivalent to a block {y{®

of typel.
ProOF. (i) Since {x,} is symmetric, we may assUme that

G2y 2,2 20,

Let
¢ Pn+1
@)
yn Z ai—p,,xi’
i=p.+1

n=1,2- If SUp;cycso (Pas1 — P») < + o0, then {y{”} is equivalent to {x,}
which is certainly equivalent to a block of type II of {x,}. Hence we may assume,
by switching to a subsequence if necessary, that p, — p,_; < p,+4 — p,, 1t = 1,2,
Let ul® = X2 a;x,;, n = 1,2,-- be a block of type II. Choose an increasing
sequence {n;} such that

© pni+l
“ ) o:jxj“<e/2‘andletzm= 2 e

J=pPnte1—Pni J=pnit+1

=12,

ij=pro
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Then {z,,} is equivalent to {y®} and

© © © !
E ” u?') -2y, “ é Z n Z Ot_,-x“- I <eé&.
i=1 i=1 j=Pn,+l"Pn,

By a theorem of C. Bessaga and A. Pelczynski [2], {u{”} is equivalent to {z, },
Thus {u{} ~ {y;?}.

(i) If {u{}is a block of type II, by the same construction, there exists a block
{y®} of type I which is equivalent to {u*}. Q.E.D.

COROLLARY 2. Let {x,} be a symmetric basis of a Banach space X. Then
every block of type 1 of {x,} is equivalent to {x,} if and only if every block of
type Il of {x,} is equivalent to {x,}.

PROOF. Let o = X2, ax,eX, o, #0 and let {y}, respectively {u},
be a block of type I, respectively type II, of {x,} determined by a. Since {x,} is
symmetric, {u®} > {y®} > {x,}. Hence {u®} ~ {x,} implies that {y’'} ~ {x,}.
Conversely, if {y®} ~ {x,} by all 0 # a e X, by Proposition 1, we conclude that

) ~ {xa}- QE.D.

ProposITION 3. Let {x,} be a symmetric basis of a Banach space X and let

Pt P +1
Yn = z Oy—p X; and Zp = z ﬂi—p"xb n= 1: 2’ o
i=pp+1 i=p,+1

wherea; 20,2 20and B, = B, =+ 20, be blocks of type I in X. If there
exists constant K > 0 such that

Ma
M=

<K
1 i

ﬂn n= 1’2a""

i

1

then {z,} dominates {y,}. A similar result also holds when {y,} and {z,} are
blocks of type II.

PrROOF. Suppose X, b,z, is convergent. Since {x,} is symmetric, we may
assume that b, =0, n=1,2,.--. Let fe X*, ]f” =1 and let f(x,) =a,20
n = 1,2,+-. For each n, let ¢, be a permutation of {p, + 1,+*, p,+} such that
Ay pnt1) = Z g (p, .y 1heED, SiNCE 0y 2052+ 20,

) ] 0 Pn+t © P+
I f ( z b,,y,,) = Xb, ¥ aoy_,, S T b, X a, %,
n=1 / n=1 i=pat1 n=1 i=pn+l
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Since
n n
E o é K Z ﬁi’ n = 112’ AP
i=1 i=1
Pn+1 P+t
)Y e ())%i~ pn =K Z aa,.(i)ﬂz —pn n=12--.
i=pnt+1 i=p.+

Define g(x;) = a,, if p,+ 1 =i < p,; and extend g linearly to X. Then, since
{x,} is symmetric, || g ” = ” f || = 1 and

lf (é b..yn)

ol Epe) x| 0ol

Thus

H Z by <K “ Zlb,,z,,ﬂ. Q.E.D.

LemMMA 4. Let {x,} be a symmetric basis of a Banach space X. Then the
following statements are equivalent.

(i) Every block of type 1 of {x,} is equivalent to {x,}.

(iiy For any X2 ax,eX, XX, B,x, is convergent in X where {B,} is any
enumeration of the double sequence {oa;}, i,j = 1,2, .

(iii) There exists a constant K > 0 such that for any
© 2
) tx,,x,,i‘l

n=1

0
Z X, € X

where {B,} is any enumeration of {oz,-ocj}, ij=12,--

Proor. (i) = (ii). Let 2,2 0,x,€ X, oy = oty = --- = 0 and let

Pn+1t
Y= X - p, *ps n=12--
i=p,+1

where pniy — Dy > DPu = Pa-1s 1 =2,3,---. Since {y,} ~ {x,}, there exists a
constant K such that sup, é,,<+m” PINI A ” < K.Let{b,} be any enumeration
of {ao;}, i,j =1,2,---. For a fixed n, there exists n’ such that b, e {oo0;},
i,j=12,--,n' forall k = 1,2,---,n. Choose m such that p,,, — p,, = n’. Then
| Zioi b || £ || i #iymai | S K. Thus Z,2, b,x, is convergent in X.

(i) = (iii). Let {N,} i=1,2,- be subsets of the natural numbers such that
N=U=2,N, N;=N, i=1,2, and N, AN;= for all i#j. Let

Ny ={G):j=12-}

ForeachO#x = X2 a,x,eX, let y, = £2 0,5, j = 1,2,---. Then {y,} is
a bounded block of type II of {x,} and thus is a basic sequence. For any
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X YaXa € X, since T ( 1 B.x, converges in X
where {f,} i |+|<x]) (|y,|+|fx1l)} ij= 1,2.... Thus
X v Xz ax;; converges in X. Define T(Xp%,7,X) = X, Y.y, for all
2. 1 PuX, € X. Then T, is a bounded linear operator on X for each x € X. Now for
each y e X, supy,y-1| Tu) | =supy -1 | ()| =] T,| < + o. By the uniform
boundedness principle, there exists a constant K > 0 such that | T, | < K for all

w=iba| = | T |

where {ﬁ,,} is an enumeration

Yn| |

x| =1 in X. Therefore for any x = Z;_
= | Tpm@ | - [ x] éK”" |* = K| Zx
of {ma;}, i,j = 1,2,

(iii) > (). Let 22 a,x,€X, a; # 0, and let

P-+1
In = pY Ai—p Xis n= 1:2,"‘;

i=p,t+1

be a block of type I. We may assume that o, 20, n = 1,2,---. Since a, # 0, so
{Vn} > {x,}. Conversely, if £, b,x, convergesin X and b, 2 0,n = 1,2, .-, then
X2 (o, + by)x, is convergent in X. Thus X2 ; B,x, is convergent where {8,} is
any enumeration of {(cxi + b) (¢; + b))}, i,j = 1,2,-+-. Now

sup Vi II Sup X " = " )Y ﬂnxn
12n<+o0 i= n<+ow n=1
Thus X2, b,y, is convergent in X and so {y,} is equivalent to {x,}. Q.E.D.

DerFINITION.  Let {x,,f,} be a symmetric basis of a Banach space X and let
fe X* such that f(x;) # 0. A block of type III of {f,} is a block basic sequence
{ga} of {f,} of the form g, = ZF.4}, f(x;_,)f, n=1,2,-., where {p,} is a
strictly increasing sequence of natural numbers. If {N;} is a sequence of subsets of
Nsuchthat N = U2, N, then N; AN; = forall i ;éjandltl = Ei, I=12..,
Define g(X/2, B;x;) = X2 f(x;)B.; for all 2, B;x;€ X where

Ny ={Gi,p:j=12,--}, i=1,2-.
We shall call {g;} a block of type IV of {f,}.

Since {x,} is symmetric, it is easy to see that ” g; ” = ” f ", i=12- and
| Zi-1bigi| < | ZiTbigi || for any by, by, -+, bysm n,m = 1,2, ---. Hence {g,} is
a bounded basic sequence in X*.

The proof of the following proposition is straightforward and is omitted.

PROPOSITION 5. Let fe X*, f(x,) #0 and let {g,}, respectively {h,}, be a
block of type 1II, respectively type IV, of {f,} determined by f. Then
{ha} > {ga} > {fa}
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LEMMA 6. Let {x,,f,} be a symmetric basis of a Banach space X. Then the
Jollowing statements are equivalent.
(i) Every block of type I of {f,} is equivalent to {f,}.
(ii) Every block of type 11 of {f,} is equivalent to {f,}.
(iii) Every block of type 111 of {f,} is equivalent to {f,}.
(iv) Every block of type IV of {f,} is equivalent to {f,}.

ProoF. It is clear that every block of type I, respectively type II, is a block of
type III, respectively type IV. By Corollary 2 and Proposition 5, it remains to
show that (ii) implies (iv). Let fe X*, f(x,)#0 and

(£ pm) = 108,

where X7, B;x;€ X, n = 1,2,.--. Itis clear that {g,} > {f,}. Conversely, suppose
f= X,0,f, is convergent in X* Let h, = X2 a;fi; and h/= X2 0;f
i = 1,2, Since {f,} is symmetric, {h;} ~ {h;} and by (ii), {h,} ~ {f,}. Let K >0
be a constant such that ” x> bk, “ §K” X2 b.f, ” for all X,_,b,f, € X*,
Now for any 22 ,8,x,€ X and any m = 1,2, ---,

(.:ldigi) (j%lﬂixj) = (Jéllf (xp) iéldifi.j) (kglﬂkx,“).

Hence
n m n m
Tag|s sw | Zi) Taf,ls s | Z G|
i=1 1sm<+w Nj=1 i=1 1sm<+owlj=1
£ K sup “ Zf(xj)fj“ gK”f“, n=12--.
18m<+o j=1
Thus X, «,g, is convergent and therefore {g,} ~ {f,}. Q.E.D.

The following lemma is due to J. Lindenstrauss and T. Tzafriri. (See the proof
of [6, Th. 4] and also [13].)

LemMmA 7. Let {x,} be an unconditional basis of a Banach space X. Let
() €co and y, = Zico,0Xis Zo = Zjer, BiX; 1 =1,2,+, be bounded block
basic sequences of {x,} such that 6, A1, = & for all n,m = 1,2,.-.. If there
exists a projection P from X onto [n,y, + z,] then {z,} dominates {n,y,}.

PrROOF. We may assume that the unconditional constant of {x,} is 1. Suppose
P(y) = 5y ¢Pny; + z;) and P(z)) = 22, dPny; +z), i = 1,2, Since
{x,} is unconditional, there exists a projection E of norm one such that E(x,) = x,
if neg, for some i = 1,2,--- and E(x,) = 0 otherwise. Then



198 P. G. CASAZZA AND B. L. LIN Israel J. Math.,

EP(z) = 1_21 ",

and EP can be regarded as an operator from [z,] to [y,] which is defined by the
infinite matrix (d‘"n,). Since {z,} and {y,} are unconditional bases of constant
one, it follows that the diagonal matrix defines an operator D: [z,] - [y,]**
[12] such that | D| < |EP| < P|.

Suppose that X2 ,a,z, converges. Then D(XZ.,a,z,) = 2> a,d" n,ya
converges. However, n,cl” +d =1 for all n=1,2,-, |P]|< |P| and
lim,. o, = 0. Hence lim,.,d” =1 and thus X2, a.m,y, converges. This
completes the proof that {z,} dominates {#,y,}. Q.E.D.

We now prove the main theorem of the section.

THEOREM 8. Let {x,} be a symmetric basis in a Banach space X. If {y,} is a
block of type 1 of {x,} then {y,} is equivalent to {x,} if and only if [y,] is
complemented in X.

PrOOF. Let X% ax,€X, oy #0, and let y, = ZP231, oy, xp no= 1,2, ..
We may assume that 1 20,20, i = 1,2,---. Since {x,} is symmetric we have
| 22 Boxa | = | Zo s Buxposs || for all T3y B,x, € X. Suppose {y,} is equiva-
lent to {x,}. Let K >0 be a constant such that

E Byl £K “ E ﬂ,,x,,n for all E Bux.e X.
n=1 a=1

n=1

Define
P ( hX ﬂnxn) = 2 (ﬁp,‘-bl/al)ym z ﬂ”XnEX.
n=1 . n=1 n=1

Since {y,} is equivalent to {x,}, P is well defined and it is easy to see that P is a
projection on [y,] with || P | £ K /a,.

Conversely, let P be a projection from X onto [y,]. If x = £, B,x, in X
and | x| <1, choose 1=n, < n, < - such that l| TraBixi| S 1/2,i=2,3, ...
Form;Ssm<n,,i=12/ .l

i

; = jElajx,,,,,+,- if pm+ IS Pm+t
m =
Im if Pt i> Pmss

and

{(ym_zm)/llym_zm" if Yin # Zm
0 if y, =z,

Wi
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Let n, = ” VYo — z,,], n=12-. Then y, = g,w,+2z, n=1,2,---,and {z,} and
{w,} are bounded blocks of {x,}, {n,}ec, Since 0=Lo,<1, n=12,--,
| 221 Buza|| S 22104 || 2, Bixp 4| < + 0. Thus X, B,z, is convergent.
By Lemma 4, X2, B.n.w, is convergent and so X.°; By, is convergent. Hence
{x,} > {y.}. However, {y,} > {x,}. This completes the proof that {y,} ~ {x,}.

REMARK 9. The projection constructed in the proof of Theorem 8 can be
constructed in a much more general setting. In particular, if y, = 27} L X,
is a normalized block basic sequence of a symmetric basis {x,} of a Banach space
X which is equivalent to {x,} and inf, ., sup, +;<i< ,,M,|a,-| 2 ¢ > 0, then there

exists a projection P of X onto [y,]. We have only to define
] o+
P (£ bwx) = X (b a2
n=1 / n=1

where p, + 1 £ i, < p,+, have been chosen to satisfy |°‘i,.l =cforn=1,2--,

REMARK 10. By similar argument, it can be proved that Theorem 8 also holds
for blocks of type II and type III. By using Theorem 8, it is easy to construct a
Banach space X with symmetric basis {x,} such that there exist symmetric block
basic sequences of {x,} which span a non-complemented subspace in X.

CoROLLARY 11. Let {x,} be the unit vector basis of d(a,p), 1 £ p < + 0. Then
d(a, p) has exactly two non-equivalent symmetric basic sequences if and only
if every block of type | of {x,} spans a complemented subspace of d(a, p).

ProoF. If d(a, p) has exactly two non-equivalent symmetric basic sequences,
then every block of type II of {x,} is equivalent to {x,}. By Corollary 2, every
block of type I of {x,} is equivalent to {x,} and hence spans a complemented
subspace in d(a, p). Conversely, if every block of type I of {x,} spans a complemen-~
ted subspace in d(a, p) then every block of type I of {x,} is equivalent to {x,},
Hence d(a, p) has exactly two non-equivalent symmetric basic sequences [1,
Cor. 5). Q.E.D.

COROLLARY 12. Let X be a subspace of d(a,p), 1 £ p< + . If X is isomor-
phic to d(a, p) then there exists a complemented subspace Y of X in d(a, p) such
that Y is isomorphic to d(a,p).

Proor. Let {x,} be the unit vector basis of d(a, p) and let {u,} be a basis in X
which is equivalent to {x,}. Then there exists a bounded block basic sequence {y,}
of {x,} and a subsequence {k,} of the integers such that Ef=1|l Vn — Uy, “ <1
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Let y, = X240t ox;, n=1,2,--, and let {g,} be the associated sequence of
biorthogonal functionals of {y,}. Since {y,} is equivalent to {x,}, by [1, Lem. 1],
there exists a constant ¢ >0 such that inf1§,,suppn+1§,-§,,"“|a,~| 2c¢>0. By
Remark 9, there exists a projection P from X onto [y,]. Choose m e N such that
| EnP | Z5=ml Gu || | 7» — x| < 1 where E,, is the projection on [y,] defined by
E.(y) =y, for n2m and E,(y,) = 0 otherwise. By [2, Th. 2], Y = [u, ],
n = m,m+ 1, is complemented in d(a, p). It is clear that Y is isomorphic to
d(a, p). Q.E.D.

PROPOSITION 13. Let {x,} be a symmetric basis of a Banach space X and let
Vo= Z02t i ox;, n=1,2,--, be a block basic sequence of {x,}. For each n,
let o, be a permutation of {py+1,,pusy} and let z, = T20% . | o, |x:.
Then [y,] is complemented in X if and only if [z,] is complemented in X.

Proor. OQObvious.

COROLLARY 14. Let Y be a Banach space with symmetric basis {y,}. If Y is
isomorphic to a complemented subspace of d(a,p), 1 Sp< + o, then Y is
isomorphic to either 1, or d(a, p). In particular. let d(a, p) and d(b, p) be Lorentz
sequence spaces; then d(b,p) is isomorphic to a complemented subspace of
d(a, p) if and only if d(b, p) is isomorphic to d(a, p).

PROOF. Suppose Y is isomorphic to a complemented subspace X of d(a, p)
and X is not isomorphic to I,. Let {x,} be the unit vector basis of d(a, p). Since
{x,} and {y,} are symmetric bases and since X is complemented in d(a, p) by
Proposition 13, [1, Th. 3}, and [2, Th. 2], {y,} is equivalent to a block {z,} of
type I of {x,} and we may choose {z,} such that [z,] is complemented. Hence
{z,} ~ {x,} and thus {y,} ~ {x,}. Q.E.D.

DerINITION.  Let {s,} and {t,} be two sequences of non-negative numbers.
We say that {t,} dominates {s,}, denoted by t, > s, if there exists a constant K > 0
such that s, < Kt,, n = 1,2,--. We say that {s,} is equivalent to {t,}, and write
Sy~ by, if 8, > t, and t, > s,

By [1, Lem. 2], d(a, p) is isomorphic to d(b, p) if and only if s, ~ 1, where
S, = 2o—ya; and t, = X b, n = 1,2,---. As a consequence, a Lorentz sequence
space d(a, p) is isomorphic to a subspace of d(b, p) if and only if there exists
0#£a= X2, 0x€d(a,p) such that |« =1 and s ~ 1, where

o0
Sf.u) = X af(s, — Sui-1)-
i=1
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2.

In this section, we study the symmetric basic sequences in a Lorentz sequence
space d(a, p) which span complemented subspaces in d(a, p).

Lemma 15. Let {x,} be the unit vector basis of d(a,p), lSp<+ . If
Yo = ZPE4hiq0x, no= 1,2, is a bounded block basic sequence of {x,} such
that lim, , , o, = Othen there exists a subsequence {y,,} of {y,} which is equivalent
to the unit vector basis of 1, and such that [y,] is complemented in d(a, p).
Furthermore, if {y,} is normalized, then {y, } can be chosen in such a way that
the projection P from d(a, p) onto [y, ] has norm as close to one as desired.

PrOOF. We may assume that “ Vn ” =1,n = 1,2,-... By taking a subsequence
2a,2-=0and p,yy — Ppi1> Pnet — Pw 1 = 1,2,---. By [1, Lem. 1], there
exists a subsequence {4} of {y,} such that {y,} is equivalent to the unit vector
basis of /, and

if necessary, and by Proposition 13, we may assume that a, ,; 2@, 22

P+t 1
(1) . z aﬁaj+t(i) %2—,,‘, = 1~29"'
J=p i+

where (i) = z;;;ll Png+1 = Py
For X2, Bx,ed(a, p), define P(X2, Bx) = L2, d;y,, where for i = 1,2, -

Pni+t 1 P i+t
— Lanl P
di= X BofTaj | L oG8
J=Pni+1 J=Pni+t

It is clear P is a projection onto [y, ]. By [1, Prop. 5] and the Holder inequality,

w ) Pivy 14
[P(Z8x)] < Tlaks2* T |5 ot |
k i=1 i=1 'j=pui+1
2 2 p- (+1 pitl p-1
=2 X [ Iﬂjl aJ+t(l)] [ X afajh(i)]
i=1 Lji=pni+1 J=pni+1
2 -] Pnit+t -
= 2P 2 [ Z !ﬂjlpaj+r(i;] “ yn. “P(P D
i=1 J=p.i+1
< 2”2 Z ﬂ,x “

Hence P is well defined and continuous.

Finally, it is possible to replace 1/2” in (1) by a constant as close to one as one
desired (see the proof of [1, Lem. 1]), hence the subsequence {y,,} can be chosen
in such a way that || P | is aribtrarily close to one. Q.E.D.
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(The authors wish to thank Dr. Z. Altshuler for pointing out the fact that
{¥,} can be chosen such that ” P “ is as close to one as one desires and for providing
a second, simpler proof of Corollary 16 which he discovered independently.)

CoROLLARY 16. Let {x,} be the unit vector basis of d(a,p), 1 S p < + 0. If
{v.} is a block basic sequence of {x,} which is equivalent to the unit vector basis
of 1, then there exists a subsequence {y,.} of {y,} such that [y, ] is complemented in
d(a, p). Furthermore, if {y,} is normalized then {y,} can be chosen in such a
way that the projection P from d(a, p) to [y, ] is of norm arbitrarily close to one.

FIRST PROOF. Since {y,} is not equivalent to a block of type I of {x,}, by
[1, Th. 3, case 2], there exists a subsequence {y,,} of {y,} and z; = ., . a;x;,
w; = y,, — z; such that {w;} is a bounded block basic sequence of {x,}

inf sup l“il =0.

15n<+w ki+1SjSputl

By Lemma 15, and switching to a subsequence, we may assume that [w;] is
complemented and {w;} is equivalent to the unit vector basis {e;} of I,. Let P, be a
projection from d(a, p) onto [w;] and let E be the projection on d(a, p) defined by
E(x)) = x; if k;+1=£j < pp+, for some i =1,2,..- and E(x;) = O otherwise.
Then PyE(y,) =w, i =1,2,---. For any X%, Bix,€d(a,p), if PoE(Z,2,p:x)
= X2 ,dw, then define P(X2 1/3, x;) = L% ,dy,, Since both {y,} and {w;} are
equivalent to {e;}, it is easy to show that P is a well-defined, bounded projection
from d(a, p) onto [y,.]. Q.E.D.

SECOND PROOF. [Z. Altshuler.] Suppose that y, = XF2r! jax;, n=1,2,,
@y = oy 2 -+ 2 0is a bounded block basic sequence of {x,}. Since {y,} is equivalent
to the unit vector basis {e{”} of I,, there exists a constant 4 > 0 such that for
al k=1,2,-,

{ 5 y,\ >An 5 esw“p= KA.

i=1

Hence
@ Pn+t Pn+1
2 X ofa;/k> A. Since Z Z afa,lk
n=1 =pat+1 n=1 i=p,+1

is the average of k numbers, this implies that there exists a subsequence {n;} such
that X2t . afa; > A[2. Define the projection P from d(a,p) to [y,] by

j=pnit
P(Z 1Bix) = Zk 1(21,";::“ i“f r(u)/Z; pnk+l o at(l))ynk’ Zﬁ-lﬁixled(as D),
where (i) = Zj-=1 (Pnj+1— Pap) +i for p, <i=p,+;- By a computation
similar to that of Lemma 15, P has the desired properties. QED
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CoRrOLLARY 17. In d(a,p),1 S p < + o, every infinite dimensional subspace
X contains a complemented subspace which is isomorphic to 1, and every basic
sequence {y,} which is equivalent to the unit vector basis of 1, has a subsequence
{¥n.} such that [y,.] is complemented in d(a, p).

ProoF. Let {x,} be the unit vector basis of d(a, p). Then there exist a basic
sequence {u,} in X and a block basic sequence {y,} of {x,} such that

E Juy~ ] <1.

By [1, Cor. 3] there exists a block basic sequence

Pn+1y
Zy = Z biyi’ h = 132’"',

i=p,+1
such that {z,} is equivalent to the unit vector basis of I, and, by Corollary 16, we
may assume that there exists a projection P from d(a, p) onto [z,]. Let {g,} be the
associated sequence of biorthogonal functionals of {z,} and let

Pn+1
w, = 2 biui, h = 1,2,“'.

i=p,+1

Then

Pn

[PLE ol In-=l sIP] Zlal- ‘T [5i]fu-n]

®
<K[P| swp [guf - Z Jus—yu <+ o0
15n<+ n=1
where K is a constant such that sup | b,,| < + o0. Since {z,} is unconditional, the
projection E,, on [z,] (defined by E,(z,) = z, if n = m and E,(z,) = 0 otherwise)
have uniformly bounded norms. Hence there exists an meN such that
| EnP | Z2-m] Ga] | Wa — 2a|| < 1. Then the subspace [w,], n = m,m +1,-, is
complemented in d(a, p) and is isomorphic to I, Q.E.D.
ReMARK 18. In[1, Th. 1],it is shown that every infinite dimensional subspace
X of d(a, p), 1 £ p < + o, contains a subspace Y which is isomorphic to I, and

if X has symmetric basis then Y can be chosen to be complemented in X.

THEOREM 19. d(a,p),1 S p< + o, has exactly two non-equivalent sym-
metric basic sequences if and only if for every bounded basic sequence {y,} in
d(a, p) there exists a subsequence {y,} of {y,} such that {y,} is symmetric and
[¥a] is complemented in d(a, p).
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ProoF. Suppose that d(a, p) has exactly two non-equivalent symmetric basic
sequences. By taking a subsequence if necessary, we may assume that {y,} is
equivalent to a block basic sequence {z,} of {x,}, the unit vector basis of d(a, p),
such that E,‘?:,” Vo—Zn|| <1.Letz, = X2 ax;, n = 1,2,---. By Proposition
13, we may assume that a, ., 2 - 2 a, ,, 20, n = 1,2,.--. Now, by [1, Th. 3],
there exists a subsequence {z,.} of {z,} which is either equivalent to the unit
vector basis of /,, and hence a subsequence which spans a complemented subspace

in d(a, p), or there exists a block {w;} of type I of {x,} such that

™8

2 - <t

1

By hypothesis and Theorem 8, [w;] is complemented in d(a, p). Hence, by taking
a subsequence if necessary, we may assume that [z, ] is complemented in d(a, p).
Thus, by a similar proof of Corollary 17, {y,} has a subsequence which spans a
complemented subspace in d(a, p).

Conversely, if every bounded block basic sequence {y,} of {x,} has a subsequence
which spans a complemented subspace, then by Theorem 8, every symmetric

block of type I is equivalent to {x,} and so d(a, p) has exactly two non-equivalent
symmetric basic sequences. Q.E.D.

REMARK 20. Let us recall that d(a,p), 1 £ p < + o0, has exactly two non-

equivalent symmetric basic sequences if and only if SUP; <p< 40 Sak/SaSk < + ©
[1, Th. 6].

3.

In this section, we study the symmetric basic sequences in the dual space of a
Lorentz sequence space.

PROPOSITION 21. Let {x,,f,} be the unit vector basis of d(a,p), 1 <p < + .
Then every bounded block basic sequence of {f,} is q-besselian where 1[p +1/q
= 1.

ProOF. Let g, = XP23l,, af;, ” ga|| =1, n=1,2,-, be a bounded block
basic sequence of {f,}. For each n =1,2,..-, there exists y, = Zf:}f‘ﬂ Bix;
such that || y, || = 1and g,(y,) = 1. Then {y,} is a bounded block basic sequence
of {x,} and is p-hilbertian [1, Prop. 5]. Hence for any {c,}el, Z 1 CVn
is convergent. Suppose X% b,g, is convergent in d(a, p)*, then
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b (550) ()

n=1

is convergent. Thus {b,} €, and {f,} is g-besselian. Q.E.D.

We now present a technical result which will be used in proving the important
Lemma 23.

PROPOSITION 22. Let {x,} be the unit vector basis of d(a,p), 1 £ p < + .
Given ¢>0 and meN there exists 6 >0 such that

© 4 ©
Z ﬂnxn“ é E ﬂp’:an+m +¢&
n=1 n=1

forall x = X5 B,x,ed(a,p) withd 2 f; 2 B, 2+ 2 0.

PrOOF. We may assume that 1 2 a; 2 a, = -+ 2 0. Choose ke N such that
|a |<s/2m for n=>k. Let 8 = min(l,¢/2k). For X2, B.x,€d(a,p) with
5%ﬁ1%ﬁ2= goa then

© @ k 0
" E ﬂnxn ’ = z ﬁrl:an+m + E ﬁﬁ(an - an+m) + Z .Bﬁ(an - an+m)
n=1 n=1 n=1 n=k+1
é % Bn n+m + Z 611 + Z (a n+m)
=1 n=k+1
< Tp k(= ) Y
= "=1ﬂnan+m+ (ﬁ' +"=k+1an

S I Baynt S tm (—)
n=1

2m

= X Pla,.m+e. Q.E.D.

n=1
LEMMA 23. Let {x,,f,} be the unit vector basis of d(a,p), 1 <p< + 0.1
gn = ZPm3l i ouf, n=1,2,--, is a bounded block basic sequence of {f,} such
that lim, ., a, = 0, then there exists a subsequence of {g,} which is equivalent
to the unit vector basis of ¢, when p = 1, respectively to I, when 1 <p < + o
and 1/p+1/qg = 1.

ProOF. Since {f,} is symmetric (and switching to a subsequence, if necessary)
we may assume that o; 2o, 220 and ” 9n “ =1 n=1,2--. Since
hmn-‘co Oy = 0’ hCﬂCC SuP1 Sn<+wo (pn+l pn) = + .
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Case 1. p = 1. Observe that

Z ap,,+i = Gn (2 xp,.+i) S
i=1 i=1 J

forall 1 <m £ pysy — Pu B = 1,2,---. By induction, we shall find a sequence
l=n<n,<: W1th the following property:

m
= Za
i=1

pnti
=1

z ap..H'j é 2 E ai+j for all 1 é m é Pnj+1 = Pnps
j=1 Jj=1

i=12..,wherel;, =0and ; = X (pp,41—Pn), 1=23-
i=t

Let 1 = n, and suppose ny, n,,---, n; are chosen with the above property. Choose
k> p,, such that Z, - Z, 1 a;. Since lima, = 0, choose n;,; > n; such
that p, ., +1 — Pn., = i+ k and O, 45 S By j for all 1<j<k. Now for
1< mZp,,,, — Pn» and either

m
p" = a,iﬂ é 2 2 a,iﬂ-; or
i=1 j=1 i=1

Ms
/\
M3

(i) 1=m<Zk,then

m m m
< Eaj= Z(aj—ali+j)+ Z:ah”
=1 ji=1 j=1

A

B

+
M3

k
a ;< X al;+j+ Z at,+152 E a4
j=1

j=1 ji=1
Hence n;, , satisfies the required property. To show that {g, } is equivalent to the
unit vector basis of ¢, (since {g,,} is unconditional) it suffices to show that

sup ﬂmZg,,i[<+oo.

1sm<+w li=1

Let x = X°_;B.x,€d(a,1). Since o; 2, =20, we may assume that
Bi2 B2 20. Then

m m P
(iz:1 g,,,)(x)l = iz E op;s 2 Z O jopB; 2| x|, m=1,2,-.

=1 j=pnit+l

Hence Sup, §m<+oo” Z;’l=lgm é 2.
Case 2. 1 < p < + 0. By induction, we shall construct a block basic sequence
n = Zf';;:‘+1y,_f;, n= 1, 2, ey such that
@ | h

= 1,n = 1,2,---,and {h,} is equivalent to a subsequence of {g,}; and
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(11) lf X= Zg";:.+1 ﬁixiEd(a’ p), ” X ” é 13 ﬁq,.+l g ﬂqn-}-z Z 2 ﬂ4n+1 ; 0, then
|h(¥)| S 12"+ (12" + Z&pie Bla)'’?, no= 1,2, .
Let g, = p, and h; = g,. Since p, = 0,

q2
hx( 2 ﬂlxi) =<
i=q1+1 .

Suppose that we have constructed hy, h,,---, h,_, with the properties (i), (ii).
Let m = g, and ¢ = 1/2" in Proposition 22; then there exists >0 such that
| 22 B[P < 12 + Z2,BPais,, for all | T2 x| < 1 with 528,25,
= ... = 0. Since for each ¢ > 0, there exists n(e) such that ” (s,8,-++,8,0,-) ” >1
where the number of epsilons is n(e), thus there exists m € N such that for all j > m,
sup {B;: | Z2:Bxi| £ 1, Bu2 Bz 20} < 8. Now, since lim,. 0, =0,
choose k such that p,,; — p, > mand P27 o, < 1/2% Let g4y =Pys 1~ Pi + dns
Vauti = Upiis 8= 1,2,, Gury—dqn and let h, = Xfzt' . 9,f. Then ” h, ”
= ”gpk” =1 If x = Z{tt i Bixis B+1 2 Bp42228,,,,20, ”x“ <1,
then f;<éforizmand 1 28, ,,. Hence

iz ﬂ,-x,-”<%+ (5+ Z Bla )UP.

i=q+1 i=q1+1

qntm dn+1 qn+1
@ = T w+ T Bns 2 at|m] | T g
i=gqnt1 i=qntm+1 i=qatm+1

1 +“q..+1z—m ﬁme‘. ﬂ =L+ (1 +qn+12m ﬁH_m )llp

n n
2 i=gn+1 2 i=qnt1

qn+1 1/p
—1—+(1 + Z ﬂ;’a,.) .

n
2 i=qnt1

Thus h, satisfies the properties (ii). Note that {h,} is merely a translation of a
subsequence of {g,}. To show that {h,} is equivalent to the unit vector basis of I,
since {h,} is g-besselian by Proposition 21, it remains to show that X7 ,c,h,
converges for all {c,}el,.

Let x = X2, Bx,ed(a,p), |x | 1. Then

5 n n(x)’ - (.'él lcnlq')llq (E:llhn(x)lp) 1/p

For each n, let o, be a permutation of {g,+ 1,*,d,+,} such that [, .+ 1]

2 |ﬁ0‘n(qn+2)l 22 Iﬂdn(qn+l) Let y= Z,?=12?;;:+1|ﬂgn(i) |xi' Then ”yll
=[x

| =1 and |hn(x)l = z?”;:.-l‘l‘))il ﬁ.l S X 17x|ﬁa,.(i)| = h,(y). Hence, by
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replacing x by y if necessary, we may assume that f, ., 2 B, +22 -2 f,,+120,
n=1,2,.... Now by (ii),

(Epot)

1 ‘1 gu+t 1/p Iy V/p
+(—+ z ﬂfai) ”

n
2 i=gnt+1

A
X
1 M8
—
(%]

a

f @ 1 \P1i/P ; © qn+1 1/p
< 2(7)] N B, )
[n=1 n=1 i=¢g,+1 )
© 1/
(5 (5]
n=1

Thus X, ¢,h, is convergent and the proof of the lemma is complete.  Q.E.D.

THEOREM 24. Let {x,,f,} be the unit vector basis of d(a,p), 1S p< + o
Then

(i) every infinite-dimensional subspace X of [f,] contains a complemented
subspace Y which is isomorphic to I, when 1 < p < + co where 1/p+1/q = 1,
respectively to ¢, when p = 1;

(ii) if X is a subspace of [ f,] with symmetric basis then all symmetric bases
in X are equivalent.

ProoF. By an argument similar to that used to prove [1, Th. 1, 4] and
Corollary 17.

COROLLARY 25. Let {x,,f,} be the unit vector basis of d(a,p), 1 £ p < + oo.
Then

(i) [f.] is not isomorphic to any subspace of d(b,q) for all b,q;

(ii) no subspace of [f,] is isomorphic to a Lorentz sequence space.

Proor. (i) Suppose [ f,] is isomorphic to a subspace X of d(b, q) for some b
and 1 £ g < + 0. By Theorem 24, X contains a complemented subspace which is
equivalent to [,. Hence 1/p+ 1/q = 1. By Proposition 21, {f,} is g-besselian.
However, {f,} is equivalent to a symmetric basic sequence in d(b, q) and so by
[1, Prop. 5], {f,} is g-hilbertian. Thus [f,] is isomorphic to I, which is a
contradiction.

The proof of (ii) is analogous. Q.E.D.

Note that in Corollary 25 we actually prove more; namely, we may replace

{f,} by any symmetric basic sequence in [f,] which is not equivalent to the unit
vector basis of .
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4.

Let {x,,f,} be the unit vector basis of d(a, p), 1 £ p < + co. In this section, we
shall give necessary and sufficient conditions that [f,] has exactly two non-
equivalent symmetric basic sequences.

PROPOSITION 26. Let {x,,f,} be the unit vector basis of d(a,p), 1 <p < + o0,
and letb = a*?, n=1,2,---. Then

1/q

E abut| = (2 )
n=1 n=1

for all {c,}el, wherel/p+1/q = 1.

ProoF. For any x = X~ B.x, € d(a, p),
(Besa)o] = (Elot) " (Z1nre) s (£ lale) =1

S(E| e[ Q.ED.

Hence | X7 c,b.f,

PROPOSITION 27. Let {x,,f,} be the unit vector basis of d(a,p),1 < p < + o0,
and let b, = al’" n = 1,2,--. If g, = It 1ty fi n=1,2,- is a block of
type 1 of {f,}, then

(i) when p =1, {g,} is dominated by {ZPz3' . b;_, f};

(ii) when 1 < p < + o0, there exists {c,} €l,, ¢; 2 ¢; = -+ 2 0 such that {g,}
is dominated by {Z2}! ,1¢ip.bi_p, fi}-

Proor. (i) Since

ng o = gn ( an” x;) = ﬂ. p"ill xiH g "9..”

i=pa+1 i=pati i=pn+
-] Pn+1
é Z anfn Z a,.—p.‘: h= 1’2"":
n=1 i=patl

by Proposition 3, {Zfz4!, b, £} > {g.}.
(ii) By [5], there exists {c,} €l , ¢; 2 ¢; 2 --- 2 0, such that

Yo < 2” Sof| Teb, n=12-
i=1 n=1 i=1

Again by Proposition 3, {2723! 4, ¢, bi— . fi} > {94} Q.E.D.

THEOREM 28. Let {x,,f,} be the unit vector basis of d(a,p), 1 £ p< + o0,
and let {d,} be the enumeration of the double sequence {a;a;}, i,j = 1,2, in
decreasing order. Let s, = X'_ a;, t, = Xl_,di, n = 1,2,--, and let
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(i) every block of type I of {f,} be equivalent to {f,};

(ii) [f,] have exactly two non-equivalent symmetric basic sequences;

(i1i) SUP{<n<tatafsi P < + 00, 1 Sp< +0; and

(iv) SUD(<n<+otnfSy < + 0.
Then (i) and (ii) are equivalent. Each of the statements (i) or (ii) implies (iii).
Furthermore, (1v) implies (i). Thus in the case p = 1, all the statements are

equivalent.

Proof. (i)=(ii). Let {g,} be a symmetric basic sequence in [f,]. Since [f,]
does not contain any subspace isomorphic to I;, we may assume that {g,} is a
block basic sequence of {f,} and | g, | =1, n=12-. Let

P+t

Gn = z+ldifi’ Upos1 2 U p2 2 20, 20, n=1,2,-
1=pn

Iflim,_ o, = 0 then by Lemma 23, {g,} is equivalent to the unit vector basis of
l, when 1<p< 4o and 1/p+1/q =1, respectively to ¢, when p =1,
Otherwise, there exists ¢ > 0 such that a, ,; 2 ¢, n =1,2,-... Hence {g,} > {/,}.
To show {f,} > {g,}. Note that if sup; <,< 4 (Pas+1 = P») < + oo then {f,} ~ {g,}.
Hence, by taking a subsequence if necessary, we may assume that p,., — p,.;

> Ppiy — Py B = 1:29""

Case 1. p = 1. Define f(37 Bx,) = X;%yfaa, for all T2 f,x, € d(a, D).
Then fed(a,1)* and | f||=1. Let h, = X231, a;_, fi, n= 1,2, Then {h,} is
a block of type III. By (i) and Lemma 6, {h,} is equivalent to {f,}. But {h,} > {g,}
by a similar argument used to prove Proposition 27. Hence {f,} > {g,}.

Case 2. l<p<+ . Lety; =inf; ¢, cs00, 450 = 1,2,--. Theny, 2 ¢ >0
and lim,_, , ¥, = 0. Suppose there exists K € N such that y,_, # 0 and y, = 0. By
choosing a subsequence if necessary, we may assume that lim,_,, «, 4, = 0. Let
0, =0 then by
choosing a subsequence, we may assume that {g,} ~ {«,} ~ {f,}. If lim,_ .| v, |
# 0, then we may assume that {v,} is bounded and the coefficient of {v,} tends to
zero. By Lemma 23, and choosing a subsequence if necessary, we may assume that
{v,} is equivalent to the unit vector basis of .. Hence {£,} > {v,}. But {f,} ~ {1,}.
Thus {f,} > {g, = u, + v,}. Now it remains to consider the case that y, >0,

nt = = i
u, = ZPibh, of; and v, = g, ~ty 1= 1,2, IF lim,.,,

n=1,2,--.
Given an g > 0, by induction and a standard compactness argument, there
exists a subsequence {g,,} of {g,} and



Vol. 17, 1974 LORENTZ SEQUENCE SPACES 211

@ Il <ly<--inNsuchthaty, <1/n,n=12..,

(b) {h,} < d(a,p)*such that h, = Z/2, B,fisn = 1,2,
and

in

n zl(“p"¢+ll+...+l,,_1+j_ﬁj)fp,.i+11+ kg byl S (3/2i)(1 n)y in=12-
j=

Leta= X2, X0 Bifis vt 4) = Znmybaf. Then 0# aed(a,p)*. Define
(u) Z.‘l’m;:# le Pnifl Then {fl} {g u)} ~ {gm - Wi} where

pnitl

Wi = Z ijf}-, i = 1,2,"'

ji=pnitlhit. i+l

However, the coefficient of {w;} tends to zero. Hence either {g,} ~ {g,, — w;} or
we may assume that {w;} is equivalent to the unit vector basis of /. Thus {f;}
~ {wi} and so {f} > {gu, = gn,— Wi + Wil

(i) =>(i). If [f,] has exactly two non-equivalent symmetric basic sequences

then every block of type I of [f,] is equivalent to {f,}. Thus every block of {f,}
is equivalent to {f,}.

(i) = (iii). If every block of type I of {f,} is equivalent to {f,}, by Lemma 4
there exists a constant K >0 such that | Z7,8.f, | < K| Z2, «,f, |? for all

To. 1. faelf,] where {B,} is any enumeration of {oa;}, i,j = 1,2,---. Given
neN, there exist m;eN, i=12,--,k, such that n=n; +n,+ - +n,,

nyzn,z-2n,andt, = Lf_ a5, Forl<p<+o,letl/p+1/g=1and
for p =1, let g = 0; then
¢ 1 T 4 ni |
" = ( 2 a; Z ajfn¢+...+n(_;+j) ( Z xi)
2 i/p 2 i/p i=1 i=1 J i=1

A

§2-1/e “ 'f‘l\‘\z ) \él x,.“ = K“él (;i:)llqa.-‘lpﬁ'lz < K(é;l si:) llq_—.K_

The last inequality follows from Proposition 26. Hence sup; <, < + ot, /5, < K.

(iv)=>(). Casel. p=1. Let K > 0 be a constant such that ¢, <Ks,,
n=1,2,--andlet h, = 2%, a, , f, n=1,2,---. By Proposition 27 and the
fact that every block of type I of {f,} dominates {f,}, it suffices to show that
(> ().

Suppose f = X2 ;a,f,is convergent We may assume that ¢, 2 «, = +-- 2 0and
note that “f” = SUPj <t Zi=1%/2i=10; [4]. For any 2% B.x,ed(a,1),
By =220, then
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(‘éla‘hi’) ( éxﬂ"x") B xéaij_

b1-(5 on) (205
Hence ” Zi-1ohy " s ”f” : ” X aihy " = "f” sup, t, /sy S K ”f” Thus {f,}
> {h,}.

Case 2. 1<p< + 0. ByLemma 4, it suffices to show that if f= 2,2, a,f,,

a; 2 a, =20, is convergent then X.2,y,f, is convergent where {y,} is the
enumeration of {a;}, i,j = 1,2,---. By [5],

|

where b, = al’”, n = 1,2, -, and

Pi+1t n pPi+1
L g, B |f| Za I a8
=pi+1 i=1 j=p;i+1

% of,
n=1

= inf Sup 2 ai/ E clbi
i=1

{enleMp 15n<+o0 i=1

© 1/q
M, = {{cn}elq: G Zepz go,( Zcz) < 1} :
n=1 |

Let {c,} €M, such that X/ 0, 22| T2 o f, | 2o by, n=1,2, . Let {5,}
be the enumeration of {c;bic;b;}, i,j =1,2,--- in decreasing order. Then
TS 2[] f || 2~ 16;. To show that X,2,y,f, is convergent, by Proposition 3, it
remains to show that X 4,f, is convergent. Let X% B,x,ed(a,p), B, = B,
2+ 20. Then

(Eos) (£0)

liA

- 1/
(Elegs 0CE bty < (5 )
n=1 /

< Kllp( E ﬁgan)xlp = K\p (nuélﬁ"x")

n=1

where K = SUP; cp<+ o 1a/S Hence X7 9,f, is convergent. This completes the
proof of the theorem. Q.E.D.

REMARK 29. In the proof of Theorem 28, (i) = (ii), Case 2, for 1 < p < + o0,
the proof actually includes the case p = 1. We give the proof for p = 1 here
because of its simplicity.

Let {x,.f,} be the unit vector basis of d(a, p). We now study the symmetric
basic sequences in [ f,] which span a complemented subspace of [f,].

ProrosITION 30. Let {x,,f,} be the unit vector basis of d(a,p),1 < p < + o0,
andlet 1|p + 1/q = 1. If £ a,f, is convergent then for any p; < p, < - in N,
Tt " P v 1 %f; “q < + .
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pntl

TPottafy = | Pniiyseuf;]. Since {y,} is a bounded block basic sequence of
{x,} in d(a, p), {y,} is p-Hilbertian [1, Prop. 5]. Thus X,2, c,y, is convergent for
any {c,}el, Hence (Z,2;a,f)(ZnzyicV) = Zo=1c, ” ) A4 cx,-f,-” is con-

vergent. This implies that {| X231, a.f;[} €. Q.E.D.

ProoOF. For each n = 1,2, let y, = XPn**, | Bx; such that ” Va “ =1 and

LemMA 31. Let {x,,f,} be the unit vector basis of d(a, p), 1 <p < + ©, and
let 1/p+1/q = 1. If {g,} is a block basic sequence of {f,} which is equivalent
to the unit vector basis of 1, then [g,] is complemented in d(a, p)*.

ProOF. Let g, = X231, 0.f, n=1,2,---. We may assume that ” 9u ” =1,
n=12 Lety, = Zf2*', Bx such that | y,| = 1 and ZP23!,, 0,8, = | 9.
=1,n = 1,2, For any 2,2 ,9,f, € d(a, p)*, by Proposition 30, {| it i}
€l,. Hence Zﬁm t|| Z225 410,/ ]|9s is convergent. Thus X,2, (X% "ot 181Gy 1S
convergent. Define P(Z;(7.f) = Zo=y (ZF24t 41 7:8.)9, Then P is well defined
and it is easy to see that P is linear and P(g,) = g,, n = 1,2,---. By the uniform

boundedness principle, it is clear that P is bounded. Q.E.D.

THEOREM 32.  Let {x,.f,} be the unit vector basis of d(a,p), 1 £ p < + .
Then every block of type 1 of {f,} is equivalent to {f,} if and only if for every
symmetric block basic sequence {g,} of {f,}, [g.] is complemented in [ f,].

ProoF. If every block of type I of {f,} is equivalent to [f,], by Theorem 28,
[f,] has exactly two non-equivalent symmetric basic sequences. Let {g,} be a
symmetric block basic sequence of {f,}. If [g,] is isomorphic to [, then by Lemma
31, [g.] is complemented when 1 < p < + co. In the case p = 1, then [g,] is
isomorphic to ¢,. Since [ f,] is separable, so [g,] is complemented in [ £,]. Now if
{g,} is equivalent to {f,}, by Proposition 13, we may assume that g,

= X a0y 1 20, 2 2 2, 20, n=1,2,---. By Lemma 23, there
exists ¢ >0 such that a, ., 2¢, n=1,2,---. Define

P(Z af)= T Petig orall 3 ppels)

n=1 %, +1
It is easy to see that P is a projection onto [g,].
Conversely, if every symmetric block {g,} of type I of { f,} spans a complemented
subspace in [f,], then, by Theorem 8, {g,} ~ {f,}. By the argument given in
Corollary 12, every block of type I of {f,} is equivalent to {f,}. Q.E.D.

COROLLARY 33. There exists a Banach space X with symmetric basis {x,}
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such that for every symmetric block basic sequence {y,} of {x,}, [v.] is comple-
mented in X but X is not isomorphic to ¢y or I,, 1 S p < + o0.

ProOF. Leta; =a, =1, a,=1/logn, n = 3,4,--, and let {x,,f,} be the
unit vector basis of d(a,p), 1 < p < + . Then {f,} is a symmetric basis of
X =[f,]. We will show that sup; <<+ Zi=1di/2i=18; < + © where {d,} is
the enumeration of {a;a;}, i,j = 1,2,-.- in decreasing order. Then, by Theorem
28, every block of type I of {f,} is equivalent to {f,}. Hence, by Theorem 32,
every symmetric block basic sequence of { f,} spans a complemented subspace in X.
Let b, = b, = 1, b, = log(n — 1) /(logn)?, n = 3,4,---. Then it is easy to see
that X7_,a;~ Xi-1b;~nflogn. Now, for each neN, there exist n, > n,
>-2n, in N such that n =n;+n,+ - +n, and

Notethat k < n; and a,a,,+, 2 a,a,,,i=1,2,---,k,and a,,, 244, n=1,2,---. Then
log n < log(kn,) < 2logn,. Hence I d;/3%. a; ~ Xijaa,n /T2 a; ~
i aa,n/ (nflogn) < 2108"1/"2:‘=124ian,+1"i < 4(logny/n) a1an,2:‘=1"i=4-
Thus

su Xd| Xa <+ o
1§n<1100 i=1 1i=1 Q.E.D.

REMARK 34. By a result of J. Lindenstrauss and T. Tzafriri [6], a Banach
space X with unconditional basis {x,} is isomorphic to either ¢y or [,,1 < p <+ o,
if and only if for every permutation z of N and every block basis {y,} of {X.,}
there exists a projection in X whose range is the subspace generated by {y,}.
Hence if {x,} is a symmetric basis of a Banach space X, then X is isomorphic to
either ¢ or I, 1 £ p < oo, if and only if every block basic sequence of {x,} spans
a complemented subspace in X.

REMARK 35. Using the argument in Theorem 19, we can prove the following
result. Let {x,,f,} be the unit vector basis in d(a,p), 1 < p < + . Then [f,]
has exactly two non-equivalent symmetric basic sequences if and only if for every
symmetric basic sequence {g,} in [ f,] there exists a subsequence {g,,} of {g,} such
that [g,,] is complemented in [f,].

Let {x,,f,} be the unit vector basis of d(a,1). Lemma 36 yields the surprising
result that d(a, 1) and [ f,] cannot simultaneously have exactly two non-equivalent
symmetric basic sequences. Recall that d(a,1) has exactly two non-equivalent
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symmetric basic sequences if and only  SUD;<,r<+o0Sm/SeS < + ©© where
5, = Xj=,4;, h =12, [1, Th. 6]. We need the following lemma.

LemMMA 36. Let d(a,p), 1 £ p < + o, be a Lorentz sequence space. Then
0 < inflgnk<+oosnk/snskésuplén,k<+wsnk/snsk <+ © lf and Only lf there
exists 1 < q < + oo such that d(a, p) is isomorphic to d(b, p) where b, = l/n”",
n=12--

Proor. Lett, = X', b, n=1,2,.., where b, = n~t p=1,2 -, and
l<g<+o. Let 1/g4+1/q’ =1. Then t,~n'". Hence 0<inf;<,y<+o
tax [tate S SUDy <ni< +olue [tatk < + 0. If d(a, p) is isomorphic to d(b, p) then
s, ~ t, [1, Lem. 2]. Hence 0 < inf} < i<+ o Sak /SuSk S SUPt <k <+ Snk [SuSi < + 0.
Conversely, let M >0 such that 1/M Ss,/s,si <M, nk =1,2,---. Then
(1/MYs,, < sk < M¥s, for all n,k. Thus there exists a constant 0 < ¢ <1 such
that s, ~ n° (see for example, [11, p. 614-615]). Since d(a, p) is not isomorphic
to c,, we have ¢ # 0. Also, since lim,_, s,/n =0, it follows that ¢ # 1. Let
g’ =1/c and 1/q+1/q' =1. Then s,~n"? ~1t, where t, = X'_, b, and
b,=n"" n=1,2,.. Thus d(a, p) is isomorphic to d(b, p). Q.E.D.

THEOREM 37. Let {x,,f,} be the unit vector basis of d(a,1). If every block of

type L of {f,} is equivalent to {f,} then 0 <inf; <cppcs o0 Sut/SeSk S SUP1sni<+a
SualSu = + 0.

PROOF. By Theorem 28, SUp; << +0 2ieq Di/ X%y a; < + oo where {b,} is the
rearrangement of {aa;}, i,j = 1,2, -+ in decreasing order. Hence for any
nk =12 58= Z'il';lbi' Thus SUP; cpk<+oo SuSk/Snk S SUPL smk< 400 Z?’;x b,/
2™ a;< +oo. That is, inf) spsc+w Sa/S.5 > 0. Now suppose sup;c,;<+o
Su [S45¢ < + 0. By Lemma 36, we may assume that a, = n"'%, n = 1,2, ., for
some 1 < g < + co. It remains to show that in this case, SUP; << + o 2i=10;/ Xf=14
= + oo where {b,} is the enumeration of {a,a;}, i,j = 1,2, in decreasing order.

Let1/q+1/q' = 1. ForeachneN,letm = nland m = mfk, k = 1,2,.--,n.
Then

myt...tna n n e’ n _ ,
S b2 Tas,~ Zam"=3%X m'ji~m"logn
1=1 i=1 i=1 i=1
and
mi+...+mpu

a,~(my+ -+ m ) ~ (mlogn)!e’.
i=1
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Hence
mi+...+my, mi+..+mp
z b,/ X a;=(logn)'
i=1 i=1
and so SUPj<n<+ 0 Z?:lb,-/Z;':l a; = + o0. Q.E.D-
5’

Motivated by Corollary 33 and Remark 34, in this section we study a class of
Banach spaces X with unconditional basis {x,} such that every bounded block
basic sequence of {x,} spans a complemented subspace in X.

THEOREM 38. Let E be a Banach space with unconditional basis {u,} such
that for every bounded block basic sequence {y,} of {u,}, [v,] is complemented
in E. For any strictly increasing sequence {p,} in N, let X, = [u, ., 4, 42,
u,.,) in E, n=12-., and let X =(Z,2,®X,),, 1Sp<+ o, (or
(T2 @ X)) If X1 = (41,0,0,), X3 = (O,u,0,+2), x5 = (0,u3, 0, ), - is
the natural basis in X thzn every bounded block basic sequence of {x,} spans a
complemented subspace of X.

ProoF. For each n, let E, =[x, 41, X, 42, %,,,,). Let
V= q'i‘ X4y n=12--
i=gn+1

be a bounded block basic sequence of {x,}. Let {y, } be the subsequence of {y,}
consisting of all y, with the properties that y, € E, for some ke N. Define
Z,, = Z}":';j“ a;u, i = 1,2,---. Then {z,,} is a bounded block basic sequence of
{u,}. Let P, be a projection from E onto [z, ]. For each n = 1,2, ---,let P, be
the restriction of Py on E,. Then sup; <.« || Pa| < || Po . Thus there exists a
projection P from X onto [y, ] (see, for example, [11, p. 542]). Since {x,} is an
unconditional basis in X, we may assume that the unconditional basis constant
of {x,} is 1. Hence the projection Q on X defined by Q(x;) = x; if q,+ 1 5j
< q,,+1 for some ie N and Q(x;) = O otherwise is of norm one. Let P, = PQ.
Then P, is a projection from X onto [y, ] such that Py(x;) = 0 if

xj¢{xq»i+1""’xq”+1}, i = 1’2’....

Now let {y,,} be the subsequence of {y,} consisting of all the y, which are not in
{yn}. Note that if {x, 4%, +i}AE,# J for some neN then
‘o °

{xq 31+1""’qu“+1} A Eu = Q
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for all j # j,. Hence

qk“n , © qxy 41 0P 1/p
j= 1 i=qi, +1 i=t ligq +1 )

Let Fy; = [x,, 0 Xy, +4) j=1,2,---. For each je N, let g; € F5; such that
9(0i,) =1 and | g; || = 1/” Yiy, |- Define

. qk“+1
P, (Z a,,x,,) = Z g ( z aix,)y,m
n=1 S

i=1 i=ge, +1

for all X, a,x,€X. P, is clearly linear and Py(yi,,) = ¥i,,»J = 1,2,+-. Now

, @ qx, 51 'I © qkz_,n |
\Pz (E a,,x,,\, = ( Z aixi)yk“ = || 2 g; > aixilykzj"
n=1 / a, +1 / i=1 l'=qk”+1
+1 » , 1/p
- ( ol % aml”1el)
‘121” © ‘"‘21
- (2] “"1\) -5 L
i= aky, +1 / ji=1i= qx, +l
< La,xl
i=1

Hence P, is a bounded projection from X onto [y,,,]. Similarly, there exists a
projection P; from X onto [y, ] It is easy to see that P; + P, + P; is a
projection from X onto [y,]. Q.E.D.

REMARK 39. When p,=3n(n+1), n=12,--, and E=1, 1<p#2
< + o, A. Pelczynski [10] has shown that {x,} is an unconditional but not
symmetric basis of X.

CorOLLARY 40. Inl, 1< p#2< + o0, there exists an unconditional basis
{x.} which is non-symmetric and such that every bounded block basis sequence
of {x,} spans a complemented subspace in I,.

COROLLARY 41. There exists a Banach space X with unconditional basis {x,}
such that every bounded block basic sequence of {x,} spans a complemented
subspace in X and X is not isomorphic either to ¢y or l,, 1 £ p < + .

PROOF. Let E = I, and {u,} be the natural basis in [,. For p, = 4n(n + 1)
n=12-let X =(X%; ®X,), and {x,} be the natural basis in X as in
Theorem 38. Then the Banach space X with unconditional basis {x,} has the
required properties. Q.E.D



218 P. G. CASAZZA AND B. L. LIN Israel J. Math.,

REFERENCES

1. Z. Altshuler, P. G. Casazza and B. L. Lin, On symmetric basic sequences in Lorentz
sequence spaces, Israel J, Math. (to appear).

2. C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach
spaces, Studia Math. 17 (1958), 151-174.

3. P. G. Casazza and B. L. Lin, On conditional bases in Banach spaces, Rev. Roumaine Math.
Pures Appl. (to appear).

4. D. J. H. Gatling, On symmetric sequence spaces, Proc. London Math. Soc. (3) 16 (1966),
85-105.

5. D. 1. H. Garling, 4 class of reflexive symmetric BK-spaces, Canad. J. Math. 21 (1969),
602-608.

6. J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math.
9 (1971), 263-269.

7. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971),
379-390.

8. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces II, Israel J. Math. 11 (1972),
355-379.

9. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces HI (to appear).

10. A. Pelczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.

11. 1. Singer, Bases in Banach spaces I, Springer-Verlag, 1970,

12. A. E. Tong, Diagonal submatrices of matrix maps, Pacific J. Math. 32 (1970), 555-559.

13. L. Tzafriri, An isomorphic characterization of L, and cy-spaces II, Michigan Math. J.
18 (1971), 21-31.

DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF ALABAMA
HUNTSVILLE, ALABAMA, U. S. A.

AND

DEPARTMENT OF MATHEMATICS,
THE UNIVERSITY OF [owA
Iowa CIty, Iowa, U. S. A,



