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ABSTRACT 

It is shown that if (Yn} is a block of type I of a symmetric basis {xn) in a 
Banach space X', then (Yn) is equivalent to (xn) if and only if the closed linear 
span [Yn] of (y~} is complemented in X. The result is used to study the sym- 
metric basic sequences of the dual space of a Lorentz sequence space d(a, p). 
Let {xn,fn} be the unit vector basis of d(a,p), for 1 < p < + co. It is shown 
that every infinite-dimensional subspace of d(a,p) (respectively, [fn]) has a 
complemented subspace isomorphic to lp (respectively, Iq, 1/p+ 1/q = 1 when 
1 < p < + oo and co when p = 1) and numerous other results on compleme- 
nted subspaces of d(a,p) and [fn] are obtained. We also obtain necessary and 
sufficient conditions such that If  n] have exactly two non-equivalent sym- 
metric basic sequences. Finally, we exhibit a Banach space X with symmetric 
basis (xn} such that every symmetric block basic sequence of {xn} spans a 
complemented subspace in X but X is not isomorphic to either co or lp, 
l < p < + c o .  

Let  1 < p  < + ~ .  Fo r  any a = ( a l , a 2 , . . . ) 6 c o \ l l ,  a 1 > a 2 >= ... >=0, let 

d(a, p) = {x = (~1, ~2, " " ) ~  Co: s u p , ~  ~ ,~1  I ~( ,)IOa,  < + 00} where ~ is the set 

o f  all permuta t ions  of  the natural  numbers  N. Then d(a, p) with the n o r m  

II x II = (supo. I pa.) lip for  x e d(a, p) is a Banach  space and the 

sequence of  unit  vector  (x,} is a symmetr ic  basis o f  d(a, p) [4], [5]. Let  ( f ,}  be 

the sequence of  b ior thogonal  functionals  o f  (x,} in d(a, p)*. In  this paper ,  we 

s tudy the symmetr ic  basic sequences in I f ,  I ,  the closed linear span of  {f,} in 

d(a, p)*. For  the basic propert ies  of  d(a, p) we refer to [4],  [5]. In  part icular ,  it is 

known  that  d(a, p) is reflexive for  every a e Co \11 when 1 < p < + oo [5]. Fo r  the 

results on symmetr ic  basic sequences in d(a, p) we refer the reader to [1]. Another  

impor t an t  class of  Banach spaces with symmetr ic  bases are the Orlicz sequence 

spaces which have been studied by J. Lindenstrauss  and L. Tzafrir i  [7], [8], [9]. 

A basis (x,} of  a Banach  space X is called symmetr ic  if  every pe rmuta t ion  
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{x~(,)} of {x,} is a basis of X, equivalent to the basis {x,}. Let {x,} be a symmetric 

basis in a Banach space X. Define 

l_-<n<+ao 

where {f.} is the sequence of biorthogonal functionals of {x.} in X*. Then the 

symmetric norm IF[ x ][[, x ~ X, is an equivalent norm on X. Throughout this paper 

we shall assume that every Banach space with symmetric basis is equipped with 

the symmetric norm. It is clear that if {x.,f.} is the unit vector basis of d(a, p), 
then the norms in d(a, p) and, respectively, I f . ]  are symmetric norms. 

Let {x.} be a symmetric basis o fa  Banach space X and let {y.} be a block of type I 

of  {x.}. We show that {y.} is equivalent to {x.} if and only if [ y J  is complemen- 

ted in X. If {x.,f.} is the unit vector basis of d(a,p), 1 < p < + oo, it is shown in 

[1] that every infinite-dimensional subspace of d(a, p) has a subspace isomorphic 

to Ip. In this paper it is shown that, in fact, every infinite-dimensional subspace of 

d(a,p) (respectively, If .I)  has a complemented subspace isomorphic to lp 

(respectively, to lq where 1/p + 1/q = 1 when 1 < p < + oo and c o when p = 1). 

We also show that for 1 < p  < + oo and 1/p + 1/q = 1, every block basic 

sequence {#.} of {f.} which is equivalent to the unit vector basis of l~ spans a 

complemented subspace of d(a, p)*. We obtain several necessary and sufficient 

conditions such that I f . ]  has exactly two non-equivalent symmetric basic sequen- 

ces. An interesting consequence of this result is that in every Lorentz sequence 

space d(a, 1) it is impossible for d(a, 1) and [f . ]  to have exactly two non-equivalent 

symmetric basic sequences simultaneously. It is also shown that no subspace of 

d(a, p)* with symmetric basis can be isomorphic to any Lorentz sequence space. 

Finally, we exhibit a Lorentz sequence space d(a, 1) with the property that every 

symmetric block basic sequence of {f.} spans a complemented subspace of [ f . ]  

but [ f . ]  is not isomorphic either to Co or Ip, 1 < p < + oo. We also exhibit a 

Banach space X with unconditional basis {Xn} such that every bounded block 

basic sequence of {x.} spans a complemented subspace of X but X is not iso- 

morphic either to Co or lp, 1 < p < + oo. 

The notation and terminology in this paper are essentially those of I. Singer [11]. 

If  {x.} and {y.} are the respective bases of Banach spaces X and Y we say that 

{x.} dominates {y.}, and write {x.} > {y.}, in the case where ]E~= 1 ~.x. 

converges in X implies ~2oo_ 1 a.Y. converges in Y. The basis {x.} is equivalent to 

the basis {y.}, and we write {x.} ~ {y.}, if {x.} > {y.} and {y.} > {x.}. 
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. 

In this section, we study the blocks of type I-IV of a symmetric basis in a Banach 

space. 

DEFINITION. Let {x,} be a symmetric basis of  a Banach space X. For any 

= ~n~l  ~ , x , ~ X ,  ~ v ~ 0 and any p~ <P2 < "", let 

Pn+l 

Y(~) = Y ~i-p.xi, n = 1,2,....  
, = p n + l  

Then {y~)} is a bounded block basic sequence of {x,} in X. We shall call 

{y~)} a block of  type I of {x,}. 

DEFINITION. [Z. Altshuler.] Let {x,} be a symmetric basis o f a  Banach space X. 

If  {Ni) are subsets of  the natural numbers N, such that for every i, ~r = ~ ,  

N = [-Ji~ 1Ni and N~ A Nj = ~ for all i ~ j ,  then for any 0 ~ ~ = ~ l ~ , x ,  e X ,  

define u} ~) = ~,j~l ctjxLj where for every i = 1,2, ..., Ni = {i,j}. It is clear that 

{u~ ~} is a symmetric basic sequence in X. The sequence {u~ ~)} is called a block of 

type II of  {x,}. 

PROPOSITION 1. [Z. Altshuler.] Let {x~} be a symmetric basis of  a Banach 

space X and let o: = ~,~= 1 ~,x, e X such that oq ~ O. Then 

(i) for  every block {y~)} of type I of {x~}, there exists a subsequence 

{y~)} of {y~)} which is equivalent to a block, of type II of {x,}. 

(ii) every block {u~ ~)} of type II is equivalent to a block {y~'} of type I. 

PROOF. (i) Since {xn} is symmetric, we may assume that 

Let 

O~ 1 > O~ 2 ~> . . .  ~> . > = = _ > ~ , , =  " ' = 0 .  

pr l+l  

i = p ~ + l  

n = 1 , 2 , . . . .  If supl<.<+~ o (P.+I - P.) < + ~ ,  then {y~} is equivalent to {x.} 

which is certainly equivalent to a block of type II of {Xn}. Hence we may assume, 

by switching to a subsequence if necessary, that p. - p._ 1 < Pn+ 1 - P., n = 1, 2,.... 

Let u~ ~) = ~,j=l(XjXn,j, n = 1,2, .-. be a block of  type II. Choose an increasing 

sequence {hi} such that 

~.~ O~jXj < z / 2 ~ a n d l e t z n =  ~, O~j_pn,Xi.j_pn,, i = 1 , 2 , - - - .  
j=Pnt* l -Pn i  j f p , ~ l + l  
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Then {z.,} is equivalent to {y~)} and 

1=1  i = 1  j f p n t + l - p n  r 
< 8 .  

By a theorem of C. Bessaga and A. Pelczynski [2], {u~ ")} is equivalent to {z.,}. 

Thus {u[ ")} ~ {y~])}. 

(ii) If {ut, ")} is a block of type II, by the same construction, there exists a block 

{y~')} of type I which is equivalent to {Utn')}. Q.E.D. 

COROLLARY 2. Let {xn} be a symmetric basis of a Banach space X. Then 

every block of type I of {Xn} is equivalent to {x,} if  and only if  every block of 

type II of {x,} is equivalent to (x,}. 

PROOF. Let ~ = ~.~1 ~ . x . ~ X ,  oq # 0 and let {y~')}, respectively {u~.'~}, 

be a block of type I, respectively type II, of {x.} determined by ~. Since {x.} is 

symmetric, {u~ ~)} > {y~')} > {x.}. Hence {u~. ")} ~ {x.} implies that {y~"} ~ {x.}. 

Conversely, if {y<n ")} ~ {x.} by all 0 # ~ e X, by Proposition 1, we conclude that 

{u~')} ~ {x.}. Q.E.D. 

PROPOSITION 3. Let {x.} be a symmetric basis of a Banach space X and let 

P , + I  P +1 

y. = Y~ Oq_p X~ and z. = ~ fl~_p~ n = 1,2,.. .  
l f p n + l  i=Pn+ I 

where ~l = > o~2 = > "'" = > 0 and fll = > f12 = > "'" = > 0, be blocks of type I in X. I f  there 

exists constant K > 0 such that 

~, o~i <-_ K fl,, n = 1, 2, . . . ,  
1=1 1=1  

then {Zn} dominates {y,}. A similar result also holds when {y,} and {zn} are 

blocks of type II. 

PROOF. Suppose ]E~= 1 b,z, is convergent. Since {x,} is symmetric, we may 

assume that bn > O, n = 1,2,.. . .  Let r E X * ,  [lf[] = 1 and let f ( x , )  = a, ~_ 0 

n = 1,2,. . . .  For  each n, let tr~ be a permutation of {p~ + 1, . . . ,p,+z} such that 

ar >_ ... >- ar247 Then, since ~x -~ ~2 -~ "'" > O, 

,f/OOzbny X ~= ~1 oo v . . ,  ~ p.§ = Z b, Z ai~l-p. < Z b, Z aa.(oo~i_p. 
, n = l  / = p , ~ + l  n = l  z = p n §  



Vot. 17, 1974 

Since 

LORENTZ SEQUENCE SPACES 195 

cti _-< K fl,, n = 1, 2, ..., 
1 = 1  i = 1  

O~a(t)O~i_p. ~ K Z aa.(l)fl,-p., n = 1 , 2 , - . . .  
l fpn+  1 l = p ~ + l  

Define 9(xi) = a~.(o if Pn + 1 < i < Pn+I and extend g linearly to X. Then, since 

{x,} is symmetric, II g II = Ilsll = I and 

Thus 

n = l  n = l  

L~SMA 4. Let (x,} be a symmetric basis of a Banach space X.  Then the 

following statements are equivalent. 

(i) Every block of type I of {x,} is equivalent to {x,}. 

X (ii) For any Y~.~=x~.x.eX. Y - . = t f l . .  is convergent in X where {ft.} is any 

enumeration of the double sequence {~i~j}, i , j  = 1, 2, .... 

(iii) There exists a constant K > 0 such that for any 

~,x, e X,  ,x,  < K O~nX n 
; I = 1  n n 

where {ft,} is any enumeration of {~,~j}, i , j  = 1,2, .... 

go PROOF. (i) =~ (ii). Let  ~ ,  = 1~,x, e X, ~1 > ~2 > "'" > 0 and let 

P n + l  

y,  = ~ 0q_px~, n = 1,2, . - .  
i = p n + l  

where P ,+t  - P, > P, - P , -1 ,  n = 2,3, .... Since (y,} ,-. (x,}, there exists a 

constant K such that supl_.< +~ll ~ , ~  ~,Y.+' II --< K L e t  ( b , }  be any enumerat ion  

of  {~i~j}, i , j  = 1,2 , . . . .  Fo r  a fixed n, there exists n '  such that  bke{Oq~j}, 

n'  for  all k 1, 2 , . . . ,  n. Choose m such that  pro+ 1 - P~ _-> n'.  Then i , j  = 1 , 2 , . . . ,  = 

I1 ~z=~ b,x, II --< II ~:s~=,Y-§ II -< K Thus ~.:~ b.x. is convergent in X .  

(ii) =~ (iii). Let {N~}, i = 1, 2, ... be subsets o f  the natural  numbers such that  

N N~ /~, i =  1 ,2 , . . . ,  and N I A N j = ~ ;  for all i C j .  Let N = U~= x i, = 

N, = {( i , j ) : j  = 1,2, . . .} .  

For  each 0 #  x = Y~,~ict,x, e X ,  let y j  = Ej~=lcqxi4,j = 1,2,---.  Then {y~} is 

a bounded block o f  type II of  (x,} and thus is a basic sequence. For  any 
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~ , ~ t  ?.x~ ~ X, since ~n~ 1(1 ?. ] + [~, I)xn is convergent, ]~n~= 1 flnXn converges in X 

where {fin} is an enumeration of ((]~i1 + I~,1)(l~Jl + I~Jl)}, i,j = 1,2.... Thus 
oo T oo ]~j=l~,j~,~=tctix/,y converges in X. Define x(En=17nX~) = ]~n%1~nYn for all 

]~n~ 1 ~nXn e X. Then Tx is a bounded linear operator on X for each x e X. Now for 

each y ~ X, supllxlt= ,ll Tx(y)H =supllxl, =1 ]l Ty(x)II = [I T~. II < + ~" By the uniform 

boundedness principle, there exists a constant K > 0 such that [I T~ I[ < K for all 
oo t~ II x II -- 1 in X. Therefore for any x = ]~n=l .x~ 6 X ,  II Xn~,~nXn II ---- II T~(x)II 

= II Tx,.,~,(x)If" II x II ~ gll x II ~ = gll Xn~, ~,xn II ~ where {~}  *s an enumeration 

of {aigj}, i,j = 1,2,.. ' .  

(iii) ~ (i). Let ~n% 1 anxn e X, a~ ~ 0, and let 

P.+I 

Yn = ~ ~ti-o,xi, n = 1, 2,..., 
i = p ~ + l  

be a block of type I. We may assume that gn > 0, n = 1, 2, .... Since ~ # 0, so 

{Yn} > (Xn}. Conversely, if ~n~ 1 b~xn converges in X and bn > 0, n = 1, 2, ..., then 

~,,,~ 1 (o~n + b,)xn is convergent in X. Thus ]~n~176 1 flnxn is convergent where {fin) is 

any enumeration of ((0q + hi) (o~j + b j)), i,j = 1, 2,-... Now 

sup I ~ b i y ,  <= sup ~f l ix ,  l l= I~ f lnxn[ .  
l _ - < n < + o o  i = 1  l ~ n < + o o  / = 1  n = l  

Thus ~ :  1 bnYn is convergent in X and so (Yn} is equivalent to {xn}. Q.E.D. 

DEFZNmON. Let {xn,fn) be a symmetric basis of  a Banach space X and let 

f ~  X* such that f ( x l )  ~ 0. A block of type III of {fn} is a block basic sequence 

= ~'~P +1 "r "~te where (Pn} is a {0,} of {f~} of the form #~ , = p . + ~  ~_~/~, n = 1,2,..., 

strictly increasing sequence of natural numbers. If {N/} is a sequence of subsets of 

N such that N = ~i~ ~ Ni, then N~ A N j =  ~ for all i ~ j and Ar i = ~r, i = 1,2,.... 
oo oo X oo Define #/(]~=1 f l jx j )= E~=J( j)/~,,j for all ~j=~ ~jxj ~ X where 

N i = (( i , j ): j  --- 1,2,...}, i =  1,2,.... 

We shall call (#i} a block of type IV of (f,}.  

Since {xn} is symmetric, it is easy to see that I1~,11- Ilfll, i -  ~,2, .., and 

II ~,,=, b,g, II < II "-'n+Pb . . . .  �9 n = ~i=~ ig i l l foranyb~,b2 , ' " ,bn+, ,n ,m 1,2, Hence{gn) is 

a bounded basic sequence in X*. 

The proof of the following proposition is straightforward and is omitted. 

PROPOSITION 5. Let f e X * ,  f ( x ~ ) ~  0 and let {g,}, respectively {h,}, be a 
block of type III, respectively type IV, of {fn} determined by f. Then 
{hn} > (gn} > {fn} 
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LEMMA 6. Let {x~,f~} be a symmetric basis of a Banach space X.  Then the 

followin# statements are equivalent. 

(i) Every block of type I of {f~} is equivalent to {f~}. 

(ii) Every block of type II of {f~} is equivalent to {f,}. 

(iii) Every block of type III of {fn} is equivalent to {fn}. 

(iv) Every block of type IV of {f~} is equivalent to {f~}. 

PROOF. It is clear that every block of type I, respectively type II, is a block of 

type III, respectively type IV. By Corollary 2 and Proposition 5, it remains to 

show that (ii) implies (iv). Let f 6 X * ,  f ( x l ) #  0 and 

g, ( _Xl JX  = 
j -  , j = l  

where ~T= 1 ~jxj e X, n = 1, 2, .... It is clear that {g~} > {f~}. Conversely, suppose 

f = E~=l~,,f, is convergent in X*. Let h, = ~,Fflgjfi.j and h, '= ~,~~ 

i = 1, 2,... .  Since {f~} is symmetric, {h;} ~ {h,} and by (ii), {h~} ~ {f~}. Let K > 0 
~o b be a constant such that IIr,. = bnh' ll <=gll ,f ll for all ~,n=lb~f~eX*. 

Now for any E~= lfl~x~ e X and any m = 1, 2, ..., 

" H m n , G O  

Hence 

I~ffigi  = < sup xj) cqfty < sup x j 
l _ _ _ m < + o o  j = l  i = 1  l _ ~ m <  + o o a j = l  

I l S(x )S li _< K sup --< KUslI, n = 1 , 2 , . . . .  
- -  1 _.6m < + oo Ij 

Thus ~ ' =  1 ~t,g, is convergent and therefore {g,} .-, {f,}. Q.E.D. 

The following lemma is due to J. Lindenstrauss and T. Tzafriri. (See the proof 

of [6, Th. 4] and also [13].) 

LE~.A 7. Let {xn} be an unconditional basis of a Banach space X.  Let 

{r/n}ec o and yn = ~ , ~ i x i ,  zn = ~,j~,,fljxj, n = 1,2,..., be bounded block 

basic sequences of {x~} such that an A r = ~ for all n, m = 1,2,.... I f  there 

exists a projection P from X onto [rl~y, + z~] then {z~) dominates {r/~y,}. 

PRoof. We may assume that the unconditional constant of {x,} is 1. Suppose 

p(y,) = Ej~ c~t)(~ljy j + z j) and P(zi) = ~,T=l d~i)(rljYj + z j), i = 1, 2,.... Since 

{xn} is unconditional, there exists a projection E of norm one such that E(x~) = x n 

if n e tr i for some i = 1, 2, ..- and E(x,) = 0 otherwise. Then 
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EP(z,) = ~ d~"rljYj 
j = l  

and EP can be regarded as an operator from [z.] to [Yn] which is defined by the 

infinite matrix (d~/j) .  Since {z.} and {y.} are unconditional bases of constant 

one, it follows that the diagonal matrix defines an operator D: [z.] ~ [yn] xx 

[12] such that Iloll ~ IIEPII ~ IIPII 
Suppose that ~.,~1 a,z, converges. Then D(E~=I a,zn) = ~,,=--1 a,d~")~l~Y* 

converges. However, r/~c~ ") +d~"' = 1 for all n =  1,2,.. . ,  Ic':'lzllPII and 

l i m , ~ r / ,  = 0. Hence limn_.~d~")= 1 and thus ~,,=:xa,rl,yn converges. This 

completes the proof that {z,} dominates {r/,yn}. Q.E.D. 

We now prove the main theorem of the section. 

TrIEORE~ 8. Let {x,} be a symmetric basis in a Banach space X. I f  {y,} is a 

block of type I of {x,} then {Yn} is equivalent to {x,} if and only if [Yn] is 

complemented in X. 

~P.+I  PROOF. Let ~.~=l~,x,~X, ~1 ~ O, and let Yn = ~i=p.+l~i-p~xi, n = 1,2,....  

We may assume that 1 ~ ~ > 0, i = 1, 2, .... Since {x~} is symmetric we have 
oo X II ~.=~ ~ II = II ~: :~ ~nxo~+~ II for all ~n~:x fl.x. e X. Suppose {y.} is equiva- 

lent to {xn}. Let K > 0 be a constant such that 

tinY, <= K flnX. for all fl~x n e X. 
n - 1  n 1 n : l  

Define 

P ( fl,xn = ~, (flp.+l[~l)Y,, ~, f l ,xneX. 
\ n = l  , n : l  n = l  

Since {Yn} is equivalent to {x,}, P is well defined and it is easy to see that P is a 

projection on [ y J  with I1 e It z g / ~ l  
Conversely, let P be a projection from X onto [y,]. If x = ~n~ 1 flux, in X 

oo X and Ilxll s 1, choose l = n l  < n2 < "" such that II zj=n,~j JII---< 1/2 ' , i=2,  3, .... 

For ni < m < hi+l, i = 1,2, ..., let 

f' ~., ~jxp,,,+ j 
Zm ~ j = l  

Ym 
and 

wm= { (Ym0 - z.>/11 y .  - z. II 

if p,, + i < p,,+ 1 

if Pm+ i > Prn+l 

if Ym ~ Z,, 

if Ym = Zm. 
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Let t/n = [I Y" - z, [[, n = 1,2,.... Then y, = t/,w, +z, ,  n = 1, 2,... ,  and {z,} and 

{w,} are bounded blocks of {x,}, {~/,}ec o. Since 0__< ~,__< 1, n - - 1 , 2 , . . . ,  
Qo Z oo X co Z I] ~ . = ' f l . . [ I  =< ~~ ll ~J=.,flJ p~+,[] < + co. Thus ~,n=lfl,,,, is convergent. 

By Lemma 4, Z .~  1 fl,,rl,,w, is convergent and so Z.%1 fl.y. is convergent. Hence 

{x.} > {y.}. However, {y.} > {x.}. This completes the proof that {y.} ... {x.}. 

REMARK 9. The projection constructed in the proof of Theorem 8 can be 
~)-" p.  + 1 constructed in a much more general setting. In particular, if y. = .-~=p.+l 0qx~ 

is a normalized block basic sequence of a symmetric basis {x.} of a Banach space 

X which is equivalent to {x.} and infl~,  sup~.+l_~,~p,,+,[~,[ > c > 0, then there 

exists a projection P of X onto [y.].  We have only to define 

P ( b.x. = ]~ (bi./a~.)y . 
\ . = 1  , n m l  

where p, + 1 __< i, __< P,+t have been chosen to satisfy [0q.[ => c for n = 1,2, .... 

REMARK 10. By similar argument, it can be proved that Theorem 8 also holds 

for blocks of type II and type III. By using Theorem 8, it is easy to construct a 

Banach space X with symmetric basis {x,} such that there exist symmetric block 

basic sequences of {x,} which span a non-complemented subspace in X. 

COROLLARY 11. Let {x,} be the unit vector basis of d(a,p), 1 <- p < + oo. Then 

d(a,p) has exactly two non-equivalent symmetric basic sequences if and only 

if every block of type I of {x,} spans a complemented subspace of d(a, p). 

PROOF. If d(a, p) has exactly two non-equivalent symmetric basic sequences, 

then every block of type II of {x,} is equivalent to {x,}. By Corollary 2, every 

block of type I of {Xn} is equivalent to {Xn} and hence spans a complemented 

subspace in d(a, p). Conversely, if every block of type I of {x,} spans a complemen- 

ted subspace in d(a, p) then every block of type I of {x,} is equivalent to {x,}. 

Hence d(a,p) has exactly two non-equivalent symmetric basic sequences [1, 

Cor. 5]. Q.E.D. 

COROLLARY 12. Let X be a subspace of d(a, p), 1 <= p < + co. I f  X is isomor- 

phic to d(a, p) then there exists a complemented subspace Y of X in d(a, p) such 

that Y is isomorphic to d(a,p). 

PROOF. Let {x,} be the unit vector basis of d(a, p) and let {u,} be a basis in X 

which is equivalent to {x,}. Then there exists a bounded block basic sequence {y,} 

of {x,} and a subsequence {k,} of the integers such that Y~,~=,II Y, - Uk.l] < 1. 
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Let y~ = ~ = p ~ . l  ~ ~, n = 1, 2, ..., and let {g~} be the associated sequence of  

biorthogonal functionals of {y~}. Since {Yn} is equivalent to {x,}, by [1, Lem. 1], 

there exists a constant c > 0 such that i n f l ~ , s u p p n + l ~ p , . , [ ~ [  __> c > 0. By 

Remark 9, there exists a projection P from X onto [Yn]. Choose m ~ N such that 

IJ EmP II xo mll II II yn - II < 1 where Em is the projection on [y~] defined by 

Em(y~) = Y~ for n _-m and Em(y~)= 0 otherwise. By [2, Th. 2], Y = [Uk.], 

n = m,m + 1, .-., is complemented in d(a,p). It is clear that Y is isomorphic to 

d(a, p). Q.E.D. 

PROFOSlTION 13. Let {x~} be a symmetric basis of a Banach space X and let 

yn ,.,i=p~+l~ixi, n = 1,2, ..., be a block basic sequence of {x~}. For each n, 
~ P  +t  let cr, be a permutation of { p , + l , . . . , p , + t } a n d l e t  z , =  , . , i=p,+t[~(0Ixv 

Then [y,] is complemented in X if and only if [z,] is complemented in X. 

PROOF. Obvious. 

COgOLLARY 14. Let Y be a Banach space with symmetric basis {y,}. I f  Y is 

isomorphic to a complemented subspace of d(a,p), 1 <= p < + oo, then Y is 

isomorphic to either Ip or d(a, p). In particular, let d(a, p) and d(b, p) be Lorentz 

sequence spaces; then d(b,p) is isomorphic to a complemented subspace of 

d(a,p) if and only if d(b,p) is isomorphic to d(a,p). 

PROOF. Suppose Y is isomorphic to a complemented subspace X of d(a, p) 

and X is not isomorphic to I r Let {x~} be the unit vector basis of d(a, p). Since 

{x,} and {y,} are symmetric bases and since X is complemented in d(a, p) by 

Proposition 13, [1, Th. 3], and [2, Th. 2], {y,} is equivalent to a block {z,} of 

type I of (xn) and we may choose {z,) such that [ z J  is complemented. Hence 

(z~} ,-~ (x,} and thus {y,} -.. {x,}. Q.E,D. 

DEFINITION. Let {s~} and {t~} be two sequences of non-negative numbers. 

We say that {t~} dominates {sn}, denoted by t~ > s~, if there exists a constant K > 0 

such that s~ =< K t~, n = 1, 2,.. . .  We say that {s~} is equivalent to {t~}, and write 

sn ~ t~, if s~ > t~ and t~ > s~. 

By [1, Lem. 2], d(a, p) is isomorphic to d(b, p) if and only if s~ ~ t~ where 
n a . b s~ = E , = ~  i a n d  t~ = E ~ =  ~ ~, n = 1 ,  2,-... As a consequence, a Lorentz sequence 

space d(a, p) is isomorphic to a subspace of d(b, p) if and only if there exists 

0 : ~ =  ~.,~lct,x, ed(a,p) such that [l~[l = 1 and s~. . . tn  where 

= 

/ .=1 
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2. 

In this section, we study the symmetric basic sequences in a Lorentz sequence 

space d(a, p) which span complemented subspaces in d(a, p). 

LEMMA 15. Let {x.} be the unit vector basis of d(a, p), 1 <= p < + oo. I f  
~Pn#l  Y. = t=p.+: ct,xt, n = 1,2,..., is a bounded block basic sequence of (x.} such 

that lim,_.| ~. = 0 then there exists a subsequence {y.,} of {y.} which is equivalent 

to the unit vector basis of Ip and such that [y.,] is complemented in d(a,p). 

Furthermore, if {y.} is normalized, then {y.,} can be chosen in such a way that 

the projection P from d(a, p) onto [y.,] has norm as close to one as desired. 

PROOl~. We may assume that [[ y.][ = 1, n = 1,2,.. . .  By taking a subsequence 

if necessary, and by Proposition 13, we may assume that %,+i  > %,+2 >~ "'" 

> or. > ... > 0 and P.+2 - P.+: > P.+I - P., n = 1,2, .... By [1, Lem. 1], there 

exists a subsequence {y.,} of {y.} such that {y.,} is equivalent to the unit vector 

basis of lp and 

P"+~ > 1 
(I) E P j=p ,+,ctiaj+~( o = ~ - ,  i = 1,2,.. .  

where ~(i) i- 1 
= ~,k=lP,~+x -- P.,. 

O0 p O0 O0 For ~.i=l~,xl~d(a,p), define (~l=:fl,x~) = ~i=ld iy . ,  where for i 1,2,"" 

p n l + i  I P ~+1 

di E ,~p-I / E P = IJj j aj+:(i) ~j aj+:(i). 
j=Pni+ l #ira.on I + l  

It is clear P is a projection onto [y,,]. By [1, Prop. 5] and the H/51der inequality, 

) oo j p  l + l  p 

i = 1  i = 1  - =Pni+l 

=<2 p" ~ [ p . ~ l  l/hi%+,.,] otP.aj+,(i,]p-x 
1 = 1  t . j=p. t+1 t . j = p . ~ +  x 

[ P.~+x 1) 

'i II p" < 2t'" I,~.=lPixi 

Hence P is well defined and continuous. 

Finally, it is possible to replace 1/2 9 in (1) by a constant as close to one as one 

desired (see the proof of [1, Lem. 1]), hence the subsequence {y,,} can be chosen 

,n such a way that II P II is aribtrarily close to one. Q.E.D. 
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(The authors wish to thank Dr. Z. Altshuler for pointing out the fact that 

(y,,) can be chosen such that ]l P II is as close to one  as one desires and for providing 

a second, simpler proof  of Corollary 16 which he discovered independently.) 

COROLLARY 16. Let {x.} be the unit vector basis of  d(a, p), 1 < p < + oo. I f  

{y.} is a block basic sequence of {x.} which is equivalent to the unit vector basis 

of  IF then there exists a subsequence {y.,} of {y.} such that [y,,,] is complemented in 

d(a,p). Furthermore, i f  {y.} is normalized then {y.~} can be chosen in such a 

way that the projection P f rom d(a, p) to [Yn,] is of norm arbitrarily close to one. 

FroST PROOF. Since {y,} is not equivalent to a block of type I of {x.}, by 

[1, Th. 3, case 2], there exists a subsequence {y,,} of {y,} and zl = ~k,=p.,+ IO~jXj ' 

w~ = Yn,-  ze such that {w,} is a bounded block basic sequence of {x,} 

inf sup = 0 
l < n <  +oo kl+l~_j~_p.t+l  

By Lemma 15, and switching to a subsequence, we may assume that [wi] is 

complemented and (wi} is equivalent to the unit vector basis (el} of l n. Let Po be a 

projection from d(a, p) onto [w d and let E be the projection on d(a, p) defined by 

E(xj) = xj if ki + 1 < j  <= P.,+x for some i = 1,2, ... and E(xj) = 0 otherwise. 

Then PoE(y~,) = wi, i = 1, 2,.. . .  For any Ei~ 1 flix, ~ d(a, p), if PoE(~,t~ lflix~) 

= E~=ldiW, then define P(~.~=lfl,xi) = ' ~ = l d i Y n , .  Since both {y,,} and {w,} are 

equivalent to {e~}, it is easy to show that P is a well-defined, bounded projection 

from d(a,p) onto [y,,]. Q.E.D. 

~ P n + l  SECOND PROOF. [Z. Altshuler.] Suppose that y,  = z..,~=p,~+loqx, n = 1,2,..., 

0q > 0e 2 > ... > 0 is a bounded block basic sequence of (x,}. Since {y~} is equivalent 

basis {e~ p)} of Ip, there exists a constant A > 0 such that for to the unit vector 

all k = 1,2,.. . ,  

Hence 
co 

Z 
n = l  

II~l y~ > A "t=1 ~ e(p" . = k A .  

pn+! k pn+l 

Z ~fa~/k > A. Since Z Z ~ra~/k 
=p,~+ 1 n = l  1 =pn+  1 

is the average of k numbers, this implies that there exists a subsequence {ni} such 

that ~.p.,+l ct~aj>A/2.  Define the projection P from d(a,p) to [Yn,] by ~"~j = pnl + l 
oo oo (~'~P,,k+l ~ p--1 I '~" Pn~+1 oo X 

P ( E i = l f l i x , )  - -  ~ k = l ~ , ~ i = p ~ k + l  pi0ti a r ( i ) / ~ i = z . k + l  otfa,t~))Y,,k, Ei=lfli ,ed(a,p), 
where z(i) 1-1 = ~ j = I ( P n / + t  - -  Phi) q" i for p,k < i < P,~+1. By a computation 

similar to that of Lemma 15, P has the desired properties. Q . E . D  
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COROLLARY 17. In d(a,p), 1 < p < + oo, every infinite dimensional subspace 

X contains a complemented subspace which is isomorphic to Ip and every basic 

sequence {y,} which is equivalent to the unit vector basis of Ip has a subsequence 

{y.,} such that [Yn,] is complemented in d(a,p). 

PROOF. Let {x.} be the unit vector basis of d(a, p). Then there exist a basic 

sequence {u.} in X and a block basic sequence {Yn} of {x.} such that 

oo 

x II u . -  y. II < 1. 
. = 1  

By [1, Cor. 31 there exists a block basic sequence 

Pn+I 

z, = Z b~y~, n = 1,2,..., 
i = p n + l  

such that {z,} is equivalent to the unit vector basis of lp and, by Corollary 16, we 

may assume that there exists a projection P from d(a, p) onto [z,]. Let {g,} be the 

associated sequence of biorthogonal functionals of {z,} and let 

p n  -I- 1 

w, = Z btu~, n = 1,2,.... 
l f p n +  l 

IIPII x IIg.ll. Hw.-~.ll-~ llPll x Ilg.]] ' x Ib , l l lu , -y ,  ll 
n = l  n = l  i=p,~+l 

oo 

--< <1 s II sup II g. I1" x II u . -  y. II < + oo 
l = < n < + o o  n = l  

where K is a constant such that sup[ b. ] < + m. Since {z.} is unconditional, the 

projection Em on [z.-1 (defined by E=(z.) = z. if n >= m and Em(z.) = 0 otherwise) 

have uniformly bounded norms. Hence there exists an m e N  such that 

II ~.P II x.~.II g. II II w . -  z. II < 1. Then the subspace [w,-1, n = m, m + 1, ..., is 
complemented in d(a,p) and is isomorphic to I r Q.E.D. 

REMARK 18. In [1, Th. 1-1, it is shown that every infinite dimensional subspace 

X of d(a, p), 1 -< p < + m, contains a subspace Y which is isomorphic to Ip and 

if X has symmetric basis then Y can be chosen to be complemented in X. 

THEOREM 19. d(a,p), 1 < p < + o% has exactly two non-equivalent sym- 

metric basic sequences if and only if for every bounded basic sequence {y,} in 

d(a,p) there exists a subsequence {y.,} of {y,} such that {Y,,} is symmetric and 

[y,,] is complemented in d(a,p). 

Then 
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PROOF. Suppose that d(a, p)has exactly two non-equivalent symmetric basic 

sequences. By taking a subsequence if necessary, we may assume that {y~} is 

equivalent to a block basic sequence {z,} of {x,}, the unit vector basis of d(a, p), 
_ _~. ~ _ p , , §  O~X such that E:=t  I[ Y~ Zn n < 1. Let Zn i=p,+l , ,, n = 1, 2, .... By Proposition 

13, we may assume that %,+i  => "" > %,§ ~ 0, n = 1,2, .... Now, by [1, Th. 3], 

there exists a subsequence {z~,} of  {z~} which is either equivalent to the unit 

vector basis of lp, and hence a subsequence which spans a complemented subspace 

in d(a, p), or there exists a block {w~} of type I of  {Xn} such that 

oo 

U z . , -  w, U < 1 
1--1 

By hypothesis and Theorem 8, [wJ  is complemented in d(a, p). Hence, by taking 

a subsequence if necessary, we may assume that [z,.l is complemented in d(a, p). 

Thus, by a similar proof  of Corollary 17, {y,} has a subsequence which spans a 

complemented subspace in d(a, p). 
Conversely, if every bounded block basic sequence {y,} of {x~} has a subsequence 

which spans a complemented subspace, then by Theorem 8, every symmetric 

block of type I is equivalent to {x,} and so d(a, p) has exactly two non-equivalent 

symmetric basic sequences. Q.E.D. 

REMARK 20. Let us recall that d(a, p), 1 < p < + oo, has exactly two non- 

equivalent symmetric basic sequences if and only if sup1_~< +~o S~k/S~Sk < + O0 

[1, Th. 63. 

1 

In this section, we study the symmetric basic sequences in the dual space of a 

Lorentz sequence space. 

PROPOSITION 21. Let (x,,f,} be the unit vector basis of d(a, p), I < p < + oo. 

Then every bounded block basic sequence of {fn} is q-besselian where 1/p + 1/q 

II g. II = 1, n - -  1 , 2 , . ,  be a bounded block PROOF. Let 0, = .-i=p.+l 

basic sequence of {f,}. For each n = 1,2,...,  there exists y,  = z..i=p.+lPtxl 

such that II Yn II = 1 and g,(y,) = 1. Then {y,} is a bounded block basic sequence 

of {x,} and is p-hilbertian I1, Prop. 5]. Hence for any {c,}elp, Y~,~lc,y, 
~o b is convergent. Suppose ]~n = 1 ,0, is convergent in d(a, p)*, then 
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n = l  n n 

is convergent. Thus {bn} e lq and {f~} is q-besselian. Q.E.D. 

We now present a technical result which will be used in proving the important 

Lemma 23. 

PROPOSITION 22. Let {x,} be the unit vector basis of d(a,p), 1 <= p < + oo. 

Given s > O  and m e N  there exists 6 > 0  such that 

I] ~1 ~nxnl ,=lflPnan+m+S 

for all x = Y.,=lfl, , ed (a ,p )  with ~ > fll > f12 > "'" > O. 

PROOF. We may assume that 1 > al > a2 > "" > 0. Choose k ~ N  such that 

[ a , l < e / 2 m  for n > k .  Let 6P=min(1 , s /2k ) .  For 

r > f12=  > ' ' ' =  > 0 ,  then 

~,.~= 1 fl, x, e d(a, p) with 

: , : ~  flPnan+m + n=l ~ flPn(an- an+m) + n=k+l flPn(an- an+m) 

k oo 

<_ + ]~ + ~ (an- an+m) -- ~nP an + ra ~P 
n=l n=l n=k+l 

<= flY, an+ m + k ~ + 2 
n=l n = k + l  

fl~an +m + --~ + m 
n=l 

an 

oo 

= Y~ fl~an+ m + e. Q.E.D. 
II----1 

LEMMA 23. Let {x,,f,} be the unit vector basis of d(a, p), 1 < p < + oo. I 

YY"+' ~f~, n = 1,2, ..., is a bounded block basic sequence of {f,} such f i n  ~ i = p n +  1 

that limn_.o o ~, = 0, then there exists a subsequence of {#,} which is equivalent 

to the unit vector basis of Co when p = 1, respectively to l~ when 1 < p < + oo 

and 1 / p +  1/q = 1. 

PROOF. Since {f,} is symmetric (and switching to a subsequence, if necessary) 

we may assume that 0 q > ~ 2 > . . . > 0  and Ilgnll = 1, n = 1 , 2 , . . .  Since 

limn-.~ ~n = 0, hence supl_~,<+~o (Pn+l -Pn )  = + oo. 
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Case 1. p = 1. Observe that 

Otp.+i = gn  Xp,,+i <-- --" a t  
i = 1  \ i = 1  / i -  i = 1  

for all 1 =< m < P,+I - P,, n = 1,2, .... By induction, we shall find a sequence 

1 = nl < n2 < "" with the following property: 

%..,+j < 2 al,+j for all 1 < m < P,,+I - P,,, 
j = l  j = l  

- !  

i =  1,2, . . . ,where 11 = 0 a n d l l =  ~ ( P , j + l - P , j ) ,  i = 2 , 3 , . . . .  
j = l  

Let 1 = nl and suppose nl, n2, ." ,  n~ are chosen with the above property. Choose 

~ j =  1 at~+ j = k > p., such that k > ~ '=  1 aj. Since lim =. = O, choose ni+ 1 > n~ such 

that P. , . ,+ l -P . , . ,>=l t+k  and %., .+j<an+ j for all l < j < k .  Now for 

1 < m < p.~., - p.,, and either 

ra m ~, 
_ _ < ~, atl+j < 2 ali+j; o r  (i) l < m < k ,  then E % . , . 1 + j =  = 

j = l  1=1 j = l  

(ii) k < m ,  then ~ p . , + , + y < -  ~ a j =  ~ . (a j -a , ,+ , )+  ~ a , , + j  
j = l  j--.1 j = l  j = l  

l~ k 

<= Z a j+ ~,al,+j< Z at,+X+ ~at,+j<--_2~.a,,+.t. 
1--1 j = l  j ---- 1 j = l  j = l  

Hence ni+ 1 satisfies the required property. To show that {#,,} is equivalent to the 

unit vector basis of co (since {g,,} is unconditional) it suffices to show that 

m 

sup 
l ~ m <  +Qo i 

oo Let x = ~,=tfl, x, ed(a, 1). Since ~1 > ~2 > "'" > 0, we may assume that 

#1 > #2 > " "  > 0. Then 

" ""+' II II 
i : 1  j : P n l + l  i=1 

nen  + 11 II =< 2 
Case 2. 1 < p < + oo. By induction, we shall construct a block basic sequence 

h. ~" +' ~' r such that ~"~i=q.+lHJi ,  n : 1,2,.. . ,  

(i) [[ h. [I = 1, n = 1,2, ..., and {h.} is equivalent to a subsequence of {g.}; and 
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( i i )  i f  x = Y [ " ; '  +1 fl,x, ~ d(a. p), [l x 11 =< 1, fl~.+, = f lq.  +a > " "  ->- flq.., => O, then 
~ q . + l  Ih.(x)l __< 1/2"+ (1/2" + ~,=q.+xf l fa , )  tip, n = 1,2,....  

Let ql = Pl and h, = gt. Since Pl = O, 

hi fl,xi N flixi < �89 "Jr + s flfa i �9 
\ t = q t + l  i =  1 i = q l + l  

Suppose that we have constructed hi, h2 , ' " , hn - t  with the properties (i), (ii). 

Let m = q. and e = 1/2" in Proposition 22; then there exists 6 > 0 such that 

II I] II ~ II E~=tf~xi  p < I/2~ + E~~ for all E~=t/~,x, =< 1 with 6 => 81 = > 82 

> ... > 0. Since for cache  > 0, there exists n(e) such that II (~, ~ , .  ~, 0, ...)II > 1 

where the number of epsilons is n(e), thus there exists m ~ N such that for al l j  > m, 

sup{stj: II ~ , = t s , ,  ~ ~ II . . . .  < 1, 8it > f12 > " "  > 0}  < ~. NOW, since lim.+o~. = 0, 

choose k such that Pk + t -- Pk > m and Y~,P="~+ t ~i < 1/2 ". Let q. + 1 = Pk + 1 -- Pk + q . ,  

rq~ = %~+i, i = 1 ,2 , ' " ,  q . + l - - q . ,  and let hn = x"di=qn+lYLli'~'~qn+l , , r  Then IIh. II 

- I I  II ~,-., . x  >8~.+=>. . .>&+,>o,  Ilxll<l, gp~ = 1. I f  x = , - i = q . + t v i  i, f l q .+ t  . . . .  

then fli < 6 for i > m and 1 > f lq.+ t. Hence 

qM+m qn+l pk+ra qn+l 

I h.(x)l S Z ~,+ Z 8,~, <= Z ~,+ IIh.ll" Z 8,~, [ 
t =qn+ I i =qn+m+ t i = P k +  t i =qn+m+ 1 

< 2" + .~+ fli+mXi < + + s ff~+raal 
" i=q  1 ~ - ~ -  i = q n + l  

1/p 

< ~ +  [ 2 "  + • f l~ai l  " 
i=qn+ t 

Thus h. satisfies the properties (ii). Note that {h.} is merely a translation of a 

subsequence of  {#.}. To show that {h.} is equivalent to the unit vector basis of l~, 

since {h.} is q-besselian by Proposition 21, it remains to show that E~. f tc .h~ 

converges for all {c.} e lq. 

oo X Let x = Z . = t S . . ~ d ( a , p ) ,  [1~1[ < 1. Then 

q \ l / q  ,,oo \ l / p  

5, G i .t (5 �9 
For each n, let t~ be a permutation of {q. + 1, ..., q.+l} such that ]fl..tq.+l)l 

=> 18,,,.+~,1 >= ... --> 18~.,,+,,I. Let y =  ~:ot~-.,§ Then Ilyll 
-- Ilxll x and [hn(x)[ < ~ " "  ~ I = '"+' i = = : , = ~ . + , . , 8 , 1  < z , = ~ . + t r , 1 8 o . ( ) l  h.(y). Hence, by 
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replacing x by y if necessary, we may assume that/~q.+ t >/~q. + 2 > "'" > P~.+t > 0, 

n = 1,2,.... Now by (ii), 

Y=lh.(x)l" ) <= + + x ,ta, 
n 1 n : I  l=qn+I 

( )'" 
. : .  t 2 " l  I + l +  x ll,'a, n = l  l = q . + l  

= L-.=, t ~ - !  J + " 

Thus ~,% t c,h, is convergent and the proof of the lemma is complete. Q.E.D. 

THEOREM 24. Let {xn,f~ } be the unit vector basis of d(a, p), 1 < p < + oo 

Then 

(i) every infinite-dimensional subspace X of [fn] contains a complemented 

subspace Y which is isomorphic to lq when 1 < p < + oo where 1/p + 1/q = I, 

respectively to c o when p = 1; 

(ii) if X is a subspace of [f~] with symmetric basis then all symmetric bases 

in X are equivalent. 

PROOF. By an argument similar to that used to prove [1, Th. 1, 4] and 

Corollary 17. 

COROLLARY 25. Let {x~,f,} be the unit vector basis of d(a,p), 1 < p < + oo. 

Then 

(i) [ f , ]  is not isomorphic to any subspace of d(b, q)for all b, q; 

(ii) no subspace of [f~] is isomorphic to a Lorentz sequence space. 

PROOF. (i) Suppose [f~] is isomorphic to a subspace X of d(b, q) for some b 

and 1 =< q < + oo. By Theorem 24, X contains a complemented subspace which is 

equivalent to lq. Hence 1/p + 1/q = 1. By Proposition 21, {f,} is q-besselian. 

However, {f~} is equivalent to a symmetric basic sequence in d(b, q) and so by 

[1, Prop. 5], {f~} is q-hilbertian. Thus [f~] is isomorphic to l~, which is a 

contradiction. 

The proof of (ii) is analogous. Q.E.D. 

Note that in Corollary 25 we actually prove more; namely, we may replace 

{f~} by any symmetric basic sequence in [ f , ]  which is not equivalent to the unit 

vector basis of  lq. 



Vol. 17, 1974 LORENTZ SEQUENCE SPACES 209 

4. 

Let {x,,f,} be the unit vector basis of  d(a, p), 1 __< p < + or. In this section, we 

shall give necessary and sufficient conditions that [ f , ]  has exactly two non- 

equivalent symmetric basic sequences. 

PROPOSITION 26. Let {x~,f,} be the unit vector basis of d(a, p), 1 < p < + o% 

and let b = a~/p, n = 1, 2 , . . . . T h e n  

for all {c,} e lq where 1/p + 1/q = 1. 

PROOF. For any x = ~ ,~  1 flnx, e d(a, p), 

= 1 ) i, xH. 
Hence II Z.==,c.b.A II < (x:--,lcn I ' ) " .  Q.E.D. 

PROPOSITION 27. Let {x,,f,} be the unit vector basis of d(a, p), 1 __< p < + oo, 

and let b, -- a~/p, n = 1, 2, .... l f  g~ = ~.gn., ,=q~+a~i-p.f~, n =  1,2, ..., is a block of 

type I of {f,}, then 
~ n + l  (i) when p = 1, {gn} is dominated by {Y~=p.+~b~_p.f,}; 

(ii) when 1 < p < + 0% there exists {c,} ~ lq, c~ >= cz ~ ... >= 0 such that {g,} 
Pw+l is dominated by { ~. =p. + lc~_p.bt_p.f~}. 

PROOF. (i) Since 

P n + l  

t = p n + !  

x,)<= u 
k i f p . , +  1 , 1 

< ~o~nfn, ' a _ p . ,  n = 1,2,..., 
n = l  i =  1 

P n + l  b by Proposition 3, {~l=p.+l l-p.fi} > {g,}. 

(ii) By r5], there exists {e,} ~ lq, c 1 __> c 2 __> .-. ~ 0, such that 

1=1  U n =  1 II i =  l 

Again by Proposition 3, {~]':~,'.+I ci-p.bt-p. f i}  > {g,). Q.E.D. 

THEOREM 28. Let {xn,fn } be the unit vector basis of d(a, p), 1 < p < + oo, 

and let {d,} be the enumeration of the double sequence {aiaj}, i , j  = 1,2,.. .  in 

" d = decreasing order. Let s, = ~,~=lai, tn = ~,i=l i, n 1,2,.. . ,  and let 
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(i) every block of type I of {f.} be equivalent to {fn}; 

(ii) [ f . ]  have exactly two non-equivalent symmetric basic sequences; 

(iii) sup,<.<+~t~/s 2-1Iv < + 0o, 1 -< p < + oo; and 

(iv) sup~_~,<+~ t,/s~ < + oo. 

Then (i) and (ii) are equivalent. Each of the statements (i) or (ii) implies (iii). 

Furthermore, (iv) implies (0. Thus in the case p = 1, all the statements are 

equivalent. 

Proof. (i)=~ (ii). Let {g~} be a symmetric basic sequence in [f~]. Since I f , ]  

does not contain any subspace isomorphic to 11, we may assume that {gn} is a 

block basic sequence of (f,} and Ilo, l{ = 1, n = 1,2,.. . .  Let 

Pn+l 

g~ = ~ ~&,  %n+a > %n+2 > "'" > ~vn+l > 0, n = 1 , 2 , - . . .  
i = p n + l  

If  lim,_.oo ~, = 0 then by Lemma 23, {a~} is equivalent to the unit vector basis of 

lq when l < p < + o o  and 1 / p + l / q =  1, respectively to c o when p =  1. 

Otherwise, there exists c > 0 such that %.+ 1 > c, n = 1, 2, .... Hence {g~} > {f~}. 

To show {f~} > {gn}. Note that if sup1 ~ <  + oo(P,+ 1 - P,) < + ov then {f~} .., { #~}. 

Hence, by taking a subsequence if necessary, we may assume that P~+2-  P,+~ 

> Pn§ - P,, n = 1,2,--.. 
oo a Case 1. p = 1. Define f(]~,~l[3,x,) = ]~,=1/~ , for all ]~,~l#,x, ed(a, 1). 

Then fed(a ,  1)* and Ijf}}---1, Let h~ = --,,=vn+l , - v j l ,  n =  1,2,.. . .  Then {h,} is 

a block of type III. By (i) and Lemma 6, {h,} is equivalent to {f,}. But {h,} > {#~} 

by a similar argument used to prove Proposition 27. Hence ~'f~} > {#~}. 

Case 2. l < p < + o o .  L e t y ~ = i n f l ~ , < + ~ v . + i , i =  1, 2, -... Then y x > c > 0  

and lim,-.~o ~, = 0. Suppose there exists k e N  such that Yk-~ ~ 0 and Yk = 0. By 

choosing a subsequence if necessary, we may assume that lim,_.,o ~v.+k = 0. Let 

vv-+k a r and v, = a ,  - Un, n = 1,2,.. . .  If lim,_.~oll v, [l 0 then by Un -~- ~. ,ai=pn+l iJi  "~" 

choosing a subsequence, we may assume that {#~} ~ {u,} ~ {f~}. If  lim _. l I v, 11 
q: 0, then we may assume that {v~} is bounded and the coefficient of {v~} tends to 

zero. By Lemma 23, and choosing a subsequence if necessary, we may assume that 

{v,} is equivalent to the unit vector basis of tq. Hence {f~} > {v~}. But {f,} ~ {u,}. 

Thus {f~} > {#~ = u~ + v~}. Now it remains to consider the case that y~ > 0, 

n = 1,2,.. . .  

Given an e > 0, by induction and a standard compactness argument, there 

exists a subsequence {g,,} of {g~} and 
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(a) 11 < 12 < "" in N such that 7t, < 1/n, n = 1, 2,. . . ,  

(b) {h,} c d(a, p)* such that h n = ~]"--i f lJ j ,  n = 1, 2, . . . ,  
and 

tn  

I E (Otp ,~+l~+ . . .+Zn_l+ j - - f l j ) fpn~+Zl+-<(e /2~) (1 /n )  i ,n  = 1,2,.. . .  
j = l  

Let :t E ,=I  E~%x fljfzl+...+t.-~+j - E,=I  ,f,. Then 0 ~ a e d ( a , p ) * .  Define 

g~) vp, ,*,  b r Then {A} ~ {g~"} ~ { g , , -  wi} where L j  = P h i +  1 j - P n J J "  

p n i + l  

wi = ~" aJfi, i =  1,2,..-. 
j = p ~ , l + l t  + . . . + l l +  l 

However, the coefficient of {wi} tends to zero. Hence either {g~,} ~ {g~,-  w~} or 

we may assume that {wi} is equivalent to the unit vector basis of lq. Thus {f~} 

~ {w,} and so {fi} > {a,, = g , , -  w, + w,}. 

(ii) ::, (i). If  [ f , ]  has exactly two non-equivalent symmetric basic sequences 
then every block of type I of [ f , ]  is equivalent to {f,}. Thus every block of {f,} 
is equivalent to {f~}. 

(i) =~ (iii). If  every block of type I of {f~} is equivalent to {f,}, by Lemma 4 

there exists a constant K > 0 such that II 11 ---- gll II for all 

~,~'= 1 a,f~ e [,f~] where {fin} is any enumeration of {~i~j}, i , j  ----- 1, 2,.. . .  Given 

n e N ,  there exist n ~ N ,  i =  1,2, . . . ,k,  such that n = n ~ + n 2 + . . . + n k ,  

nl > n2 > "'" > nk, and t, = ~k= 1 ais,,. For 1 < p < + ~ ,  let 1/p + 1/q = 1 and 

for p = 1, let q --- 0; then 

~ - -  = - -  a i x i  
2 - l i p  2 - 1 / p  \ i = 1  j -  �9 i = I  

S ,  S n 

S 2 - 1 / p  i -  i 1 i = l  i 

The last inequality follows from Proposition 26. Hence sup~ ~ <  + ~t,/Sn < K.  

(iv):~(i). Case 1. p =  1. Let K > 0 be a constant such that t , < K s , ,  

n 1, 2,... and let h, x'p,+ = = --,i--~p,+ 1 at-p~f~, n = l , 2 ,  .... By Proposition 27 and the 

fact that every block of type I of {f,} dominates {f,}, it suffices to show that 

{f ,}  > {hn}. 
Suppose f = ~ =  17,f, is convergent. We may assume that :q > a2 >-- "'" > 0 and 

note that [Ifll = supx_~,<+~ ~7=~a,/~,%,a,  [-4]. For any ~, ,~, f l ,x ,  ed (a ,  1), 

fll --> f12 -->"" => O, then 
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1 \ 1 = 1  / I I =1  j = p l + l  i = 1  j = p ~ + l  

Hence 

> {h.}. 
II zT=~,h,l[  =< IISlI" II Z3-:,h, ll <- llsll sup, ,, /s, _-< KIIslI. Thus (:~) 

Case 2. 1 < p < + oo. By Lemma 4, it suffices to show that i f f  = ~,.~ t~,f,, 

�9 1-~ ~2 > "'" > 0, is convergent then E~=t?,f ,  is convergent where {y.} is the 

enumeration of {~i~j}, i , j  = 1, 2, .... By [5], 

II ~l~.S, II-- inf sup ~ ,  c,b, 
n { c n } e M n  l ~ n < + c e  i f  1= 

1/p and where b, = a, , n = 1, 2, ..., 

M ~ =  c . } ~ l q : c l _ > - e 2 > . - . ~ 0 ,  c _-<1 . 
\ n = l  . 

n ~ ~ n Let {c.}~Mq such that ]~=1 ~ < 2[] Y~.%t~.f.l[]-i=lcib,, n = l , 2 ,  . . . .  Let {6.} 

be the enumeration of {cib:jbj}, i ,j  = 1,2,-.. in decreasing order. Then 

~:~=,~, =< 2[Ifl[ ~:,'__:. To show fhat ~ i~ l? . f .  is convergent, by Proposition 3, it 

remains to show that ~.=16.f.  is convergent. Let [ .  = lp.x. ~ d( a, p), ~1 > ~ffz 

_~ ... > 0. Then 

, ~o , 0o \ l i e  

: oo \ l i p  �9 oo 

:< K.,( p:o.) = K,, ,  I I 
n = l  \ n = l  / 

where K = supl_~,<+oo t,/s,. Hence ]~,~t6,f, is convergent. This completes the 

proof  of the theorem. Q.E.D. 

Rme, ARK 29. In the proof  of  Theorem 28, (i) :~ (ii), Case 2, for 1 < p < + oo, 

the proof  actually includes the case p = 1. We give the proof for p = 1 here 

because of  its simplicity. 

Let {x,,f~} be the unit vector basis of d(a,p). We now study the symmetric 

basic sequences in [ f . ]  which span a complemented subspace of [f~]. 

PgoeosmoN 30. Let (x. , f .}  be the unit vector basis of d(a,p), 1 < p < + oo, 

and let 1/p + 1/q = 1. I f  E.%t~.f. is convergent then for any Pt < P2 < "'" in N, 

z=111 z , - . , ,  =,.+ 1 ~,f, II' < + oo. 
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V'p.+~ n-~ such that [lynII = 1 and PROOF. For each n = 1,2,.., ,  let Yn = "-'i=p.+lvi"i 

i=p.+ = ,-.,=p.+ x~,'Ji l[" Since {yn) is a bounded block basic sequence of 

{x#} in d(a,p), {y#) is p-nilbertian [1, Prop. 5]. Thus ~ 1  c,y# is convergent for 

any {Cn)~Ip. Hence (~=x:qfn)(~,~=xCnY,)= ~=xC#ll~.~=+p:+~cqfjll is con- 

vergent. This implies that (]l ~P"+~i=p.+X ~tifi II} ~ lq. Q.E.D. 

LEMMA 31. Let {x,,fn} be the unit vector basis of d(a, p), 1 < p < + 0% and 

let 1/p + 1/q = 1. I f  {g#) is a block basic sequence of {fn} which is equivalent 

to the unit vector basis of l~, then [g,] is complemented in d(a, p)*. 

PROOF. Let gn = YY"+~i=p~+l~tif,, n = 1,2,.... We may assume that IIgnl] = 1, 

vp.+~ #.- such that[[y.[[ = l a n d  ~P"+~ ~fli []g.[I n = 1,2,.... Let Yn = z-'i=pn+lPr"~i i=pn+l = 

= 1, n = 1, 2, .... For any E ,~x~f ,  e d(a, p)*, by Proposition 30, {[1 YY"+' ,.r I1~ i = p . +  IgiJ ill S 
p n + l  tO P n + l  ~lq. Hence ~ = 1  [[ ~',=p.+l~fillgn is convergent. Thus Y~,=i(~i=p.+l~ifli)g~ is 

(30 O0 ~ r l §  
convergent. Define P(~'~=t?nf,) = E ,= l  (Ei=p.+l Yifl,)g,. Then P is well defined 

and it is easy to see that P is linear and P(gn) = g~, n = 1, 2, .-.. By the uniform 

boundedness principle, it is clear that P is bounded. Q.E.D. 

TI-IEOREM 32. Let {x~,f~} be the unit vector basis of d(a, p), 1 <= p < + oo. 

Then every block of type I of {fn} is equivalent to {f,} if and only if for every 

symmetric block basic sequence {g~} of {fn}, [g,] is complemented in [fn]. 

PROOF. If  every block of type I of {f,} is equivalent to [f~], by Theorem 28, 

[ f J  has exactly two non-equivalent symmetric basic sequences. Let {g,} be a 

symmetric block basic sequence of {fn}. If [g~] is isomorphic to lq then by Lemma 

31, [g~] is complemented when 1 < p < + oo. In the case p = 1, then [gn] is 

isomorphic to Co. Since [f~] is separable, so [g~] is complemented in [ f J .  Now if 

{g,} is equivalent to {f,}, by Proposition 13, we may assume that g~ 

x-p,+~ ~ r > > ... > > 0, n = 1,2, .... By Lemma 23, there = ~ d i = p , + l  L/i ,  O~pn+l = ~ p n + 2  ~ ~-- O~pn+l ~-- 

exists c > 0  such that ~p,+x > c, n = 1,2,.... Define 

( ) ~ p ~ fl#f. = ~ tip. +.1. gnfora l l  ]~fl,dr,~[f~]. 
n = l  , n = l  O~p.+ 1 n = l  

It is easy to see that P is a projection onto [gn]. 

Conversely, if every symmetric block {gn} of type I of  {fn} spans a complemented 

subspace in I f ,  I, then, by Theorem 8, {g,} ~ {f#}. By the argument given in 

Corollary 12, every block of type I of {f~} is equivalent to {f~}. Q.E.D. 

COROLLARY 33. There exists a Banach space X with symmetric basis {x#} 
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such that for  every symmetr ic  block basic sequence {y,} of {x,}, [y,] is comple- 

mented in X but X is not isomorphic to c o or Ip, 1 < p < + ~ .  

PROOF. Let al = a2 = 1, a, = 1/logn, n = 3,4,. . . ,  and let (x , , f , }  be the 

unit vector basis of d(a, p), 1 < p < + oo. Then (f,} is a symmetric basis of 

X -  [f .] .  We will show that supl~.<+~o Y/]=xdi/~.'~=la~< + ov where {d.} is 

the enumeration of  {a~aj}, i , j  = 1, 2, ... in decreasing order. Then, by Theorem 

28, every block of type I of {f.} is equivalent to {f.}. Hence, by Theorem 32, 

every symmetric block basic sequence of {f.} spans a complemented subspace in X. 

Let bl = bz = 1, b. = log(n - 1)/(logn) 2, n = 3,4,. . . .  Then it is easy to see 
r~a n that ]~ '=la i Y~i=l bi ~ n / logn .  Now, for each n ~ N ,  there exist nl > n2 

> . . . > n k  in N such that n = n l + n z + . . . + n k  and 

d~ = ~, ais.~ ~ ~, aia.,ni. 
i = 1  t = 1  I = 1  

Note that k < n I and aia,k+ x < ala,l ,  i = 1, 2,..., k, and a,+ 1 >�89 n = 1, 2,.... Then 
= , , a ~ -k n log n < log(knl)  < 21ognl.  Hence ~=ldi /Y .~=l  i ~Yi=la,a, ,n,/~,=lai ~ 

E~=laia , ,n i / (n / logn)  < 21ogn l /n~=12a ia , ,+ ln i  < 4( lognl /n)  ala,,Y~k,=l hi=4.  

Thus 

sup ~ d~ at < + oo. 
Q.E.D. l < n <  + o o  i = 1  

REMARK 34. By a result of J. Lindenstrauss and T. Tzafriri [6], a Banach 

space X with unconditional basis {x,} is isomorphic to either co or lp, 1 < p < + oo, 

if and only if for every permutation r~ of N and every block basis {Yk} of {x,(,)} 

there exists a projection in X whose range is the subspace generated by {Yk}. 

Hence if {x,} is a symmetric basis of a Banach space X, then X is isomorphic to 

either Co or lp, 1 < p < oo, if and only if every block basic sequence of {x,} spans 

a complemented subspace in X. 

REMARK 35. Using the argument in Theorem 19, we can prove the following 

result. Let (x . , f . }  be the unit vector basis in d(a, p), 1 < p < + oo. Then [ f . ]  

has exactly two non-equivalent symmetric basic sequences if and only if for every 

symmetric basic sequence (O.} in [ f . ]  there exists a subsequence {9.,} of {9.} such 

that [0.,] is complemented in [f .] .  

Let (x.,f.} be the unit vector basis of  d(a, 1). Lemma 36 yields the surprising 

result that d(a, 1) and If . ]  cannot simultaneously have exactly two non-equivalent 

symmetric basic sequences. Recall that d(a, 1) has exactly two non-equivalent 
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symmetr ic  basic sequences if and only SupI<__,,k<+~S,k/S, Sk < + OO where 

s, = ~E~'= 1 a i, n = 1, 2, ... [-1, Th. 6]. We need the following lemma.  

LEMMA 36. Let d(a,p), 1 < p < + oo, be a Lorentz sequence space. Then 

0 < inf l~_nk<+ooSnk/SnSk~SUPl~_n.k<+~oSnk/SnSk < + O0 if  and only if there 

exists 1 < q < + oo such that d(a,p) is isomorphic to d(b,p) where b, = 1/n 11q, 

n = 1,2,. . . .  

n PROOF. Let t, = 2E~=~b~, n = 1 ,2 , . . . ,  where b, = n -l/q, n = 1,2 , . . . ,  and 

l < q < + o o .  Let 1 / q + l / q ' =  1. Then t ~ ~ n  l/q'. Hence 0<infl_~,,k<+oo 

t,k/t~tk < supx<__,,k<+oot, k/tntk < + 00. I f  d(a,p) is i somorphic  to d(b,p) then 

s, --, t, [1, Lem. 2]. Hence 0 < infl~,,k< +~o Snk/SnS k ~ supl~_n,k<+oo Snk/SnSk < +00. 

Conversely,  let M > 0 such that  1 / M  < s,k/S,Sk < M, n, k = 1, 2 , . . . .  Then 

(1/Mk)s,~ < s k < Mks,~ for  all n,k. Thus there exists a constant  0 < c < 1 such 

that  s, ~ n c (see for  example,  [-11, p. 614-615]).  Since d(a,p) is not i somorphic  

to Co, we have c 5 0 .  Also, since lim,-.oo s , /n - - -0 ,  it follows that  c # 1 .  Let  

q ' =  1/c and 1/q + 1 / q ' =  1. Then s , ~  n j/~',.,t" where t~ = ~ ' = l b i  and 

b, = n -l/q, n = 1,2, .... Thus d(a,p) is i somorphic  to d(b,p). Q.E.D.  

THEOREM 37. Let {x,,f~} be the unit vector basis of d(a, 1). I f  every block of 

type I of {f~} is equivalent to (f~} then 0 < infl~, ,k<+|  S~k/S~Sk ~_ supl_~,k<+~o 

S,~/S~Sk = + 00. 

PROOF. By Theorem 28, supl__<,<+oo Ei"--t b~/Y~ a~ < + oo where {b,} is the 

rear rangement  of  {a~aj}, i,j = 1,2, ... in decreasing order.  Hence for  any  
nk nk n ,k  = 1 ,2 , . . . ,  s.sk ~ Y-i=xb~. Thus  supl_~.,k<+o o s.sk/s.~ < supl~. .k<+o o ~2i=1 b~/ 

] ~ x a i <  + o~. Tha t  is, infl_~.,k<+oo S.k/S.sk>O. N o w  suppose sup1_~.~<+~ 

s.~[s.s~ < + o~. By L e m m a  36, we may  assume that  a .  = n -~/~, n = 1,2, ..., for 

some 1 < q < + oo. I t  remains  to show that  in th is case, sup ~ ~. < + oo Z~'= a bi / ~2~'= x a~ 

= + ~o where {b.} is the enumera t ion  of  {aia~}, i,j = 1, 2 , . . .  in decreasing order.  

Let  1 ]q + 1/q'  = 1. For  each n e N, let m = n ! and m~ = m/k ,  k = 1, 2,.. . ,  n. 

Then 

and 

rat+...+m,, 
E b, >_ a,s.,~ a,m,'"'= m'/"/i~ m'Z"tog n 

z = l  i = l  i = I  i = 1  

ml+...+mn 
~, a, ". (ma + "'" + m,) 1/~' "~ ( m l o g n )  l/~'. 

i = l  
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Hence 

m t + . . . + m n  Iml+...+mn 
Z b , /  ,~t a,>=(logn) Uq 

i = 1  

tl n and so supx__<,<+oo ~,i=lbi/Y,l=l ai = + oo. Q.E.D. 

. 

Motivated by Corollary 33 and Remark 34, in this section we study a class of  

Banach spaces X with unconditional basis {xn) such that every bounded block 

basic sequence of {x,} spans a complemented subspace in X. 

THEOREM 38. Let E be a Banach space with unconditional basis (u,} such 

that for every bounded block basic sequence (y,} of (u~}, [y,] is complemented 

in E. For any strictly increasing sequence {pn) in N, let X~ = [up~+l, ups+2, "', 

Up..,] in E, n = 1,2,...,  and let X = ( ] ~ , ~ l ~ X ~ ) l p ,  l = < p <  +oo ,  (or 

( ~ = t  @X,)co). I f  x t = (ui ,0 ,0  , .-.), x2 = (0, u2,0 ," ' ) ,  x3 = (0, u3,0, ""),"" is 

the natural basis in X lhzn every bounded block basic sequence of {xn} spans a 

complemented subspace of X. 

PROOF. For each n, let E~ = [Xz.+l, xn.+2,...,xp..,]. Let 

q . §  

y~ = ~ ~tx,, n = 1,2, ..., 
| = q n + l  

be a bounded block basic sequence of (x,}. Let {y,,) be the subsequence of {y~} 

consisting of all Yn with the properties that y,,eEk for some k e N .  Define 

y q.,+l ~juj, i = 1, 2, .-.. Then {z,,) is a bounded block basic sequence of Znt = j = q , - l +  1 

{u,}. Let Po be a projection from E onto [z,,]. For each n = 1,2, ..., let Pn be 

the restriction of  Po on E,. Then sup, ~.< +co [] P, II = II eo It Thus there exists a 

projection P from X onto [y,,] (see, for example, [11, p. 542]). Since {x,} is an 

unconditional basis in X, we may assume that the unconditional basis constant 

of {xn) is 1. Hence the projection Q on X defined by Q(xj) = xj if q , ,+  1 < j  

=< q,,+l for some i e N  and Q(x~) = 0 otherwise is of norm one. Let P1 = PQ. 

Then PI is a projection from X onto [y,,] such that Pl(x~) = 0 if 

Xj~{Xq..i+l,'",Xq,,,+l}, i =  1,2,. . . .  

Now let {YRj) be the subsequence of (y~} consisting of all the yn which are not in 

{y~,}. Note that if {Xqk,,o+l,...,Xq. jo+x)AE . ~ ~ for some n e N  then 

{x~ . + i , " ' , x ~  +d A e.  = 
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for all j ~ iv. Hence 

oo qk2j+ I . oo q~-2j+! , p~I/p 

j = l  i = q k 2 . / + l  j 1 i f q  

217 

Let F2j = [xqk, + 1, '" ,  xqk,~+ ~] j = 1, 2,.... For each j e N, let gj ~ F2~ such that 

gj(Ykzj)= 1 and II0Jll--1/llYk2 ll Define 

n j =  i=qk2j 1 

for all ~.~=1 a.x .~X.  P2 is clearly linear and P2(Yk~) = Yk~,J = 1,2,.... Now 

P2 ( ~ , a . x ,  = ~ g j  ~, aixi yk2~ < Ii,~ g, aixijYk2~ 
\ n = l  , j = l  i=q~ 2./+ 1 , i=q +1 

, o O  qk2j§ | \ l /p  II" = IIg l/'ll x aixill'llY ,  ) 
j i =qk;L j + 1 

. co qk2j+  ! p .  l ip  co qk2j+  1 

= (=~1 I k~+la'x'll) = I[ ~1 ~' aixill 
j =  i=q , j i = q u z j + l  

j = l  

Hence P2 is a bounded projection from X onto [YRj .  Similarly, there exists a 

projection Pa from X onto [Yk2j-,]' It is easy tO see that P1 + P2 + P3 is a 

projection from X onto [y.]. Q.E.D. 

REMAgK 39. When p . = � 8 9  n =  1,2,..., and E = I p ,  l < p ~ 2  

< + oo, A. Pelczynski [10] has shown that {x.} is an unconditional but not 

symmetric basis of X. 

COgOLLAgY 40. In Ip, 1 < p ~ 2 < + o% there exists an unconditional basis 

{x.} which is non-symmetric and such that every bounded block basis sequence 

of {x.} spans a complemented subspace in I r 

COROLLAgY 41. There exists a Banach space X with unconditional basis {x.} 

such that every bounded block basic sequence of {x.} spans a complemented 

subspace in X and X is not isomorphic either to c o or Ip, 1 < p < + oo. 

PROOF. Let E = 12 and (u.} be the natural basis in 12. For p. = �89 + 1) 

n = 1,2,..., let X = ( ~ = l  ~X.)l~ and {x.} be the natural basis in X as in 

Theorem 38. Then the Banach space X with unconditional basis {x.} has the 

required properties. Q.E.D 
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